

MIT NUCLEAR REACTOR LABORATORY AN MIT INTERDEPARTMENTAL CENTER

Experience with Tritium Evolution During Irradiation of MSRE Flibe in the MITR

David Carpenter

Group Leader, Reactor Experiments

10/27/15

Outline

MITR Introduction

Tritium Experiments in the MITR

- o Goals
- o Limitations
- Tritium and Other Gas Release Measurements
 - o FS-1
 - o FS-2

PIE Progress

Please interrupt

MIT Research Reactor (MITR)

- Part of independent Nuclear Reactor Laboratory
- Built on the MIT campus in 1958, upgraded in 1976
- > 6 MW_{th} the 2nd largest university reactor in U.S.
- Light water-cooled, heavy water-reflected
- Operates 24/7, up to 10-week cycles

DUSE

MITR Core

- 24 HEU rhomboidal elements with UAI_x platetype fuel
- ≻50°C outlet, atmospheric pressure
- ➤3 dedicated in-core experimental positions

- ➤To test the interactions between the flibe and potential FHR fuel and structural materials
- To compare material test results with parallel test at University of Wisconsin (no irradiation)
- To measure tritium production and partitioning among components

➤To evaluate the experimental components and methods for future FHR-related tests—the starting point that ultimately leads to larger experiments in HFIR and ATR

Initial Flibe Irradiations

- First in-core irradiation of MSRE flibe in 60 years
- Primary goal to identify potential safety and design issues for future experiments
- 1000 hours
- ≻ 700°C

- Study effect of different fluoride redox potentials on salt corrosion and tritium release
- Tritium and salt interaction with fuel compact graphite
- Cracking performance of TRISO particles
- > 300 hours

➤Test conditions:

- <mark>o</mark>700°C
- o Double encapsulation (Ni, Ti)
- He cover gas, He/Ne control gas
- o 5.5MW reactor power

FS-2 modifications:

- Independent irradiation facility
- o 2.7x more salt volume
- o Two fluoride potentials
- o New C/C, graphite, and TRISO particles
- Improved gas flow and exhaust

FS-1 Loading

Chamber	Container Material Combinations	
А	Two Hastelloy-N samples	18110
В	Two 316 Stainless Steel samples	
С	Three types of SiC samples: R&H CVD SiC SiC/SiC Tyranno-SA3 CVI SiC composites SiC/SiC Hi-Nicalon type-S CVI SiC composite	
D	300 surrogate TRISO particles	.0.5
E	Two Hastelloy-N samples in nickel-lined hole	
F	Two 316 Stainless Steel samples in 316SS- lined hole	

FS-1 Capsule Assembly

Graphite sample holder filled with samples and flibe

ng and gas pe Mass (g) 21.3

Capsule sealed with TCs and gas sampling lines

Samples in FS-1 are all identical to UW corrosion tests

FS-1 Capsule Irradiation

- The FS-1 capsule runs inside the MITR In-Core Sample Assembly (ICSA) thimble
 - The ICSA is an instrumented inert gas irradiation facility in a central core position
- Separate gas flow in capsule and thimble
- Thermocouples in graphite for temperature measurement

	Fast flux (n/cm ² -sec) (E > 0.1 MeV)	Total neutron flux (n/cm ² -sec)	Fast flux/Total flux ratio, %
FS-1 Flibe compartments (5.5 MW)	1.06×10 ¹⁴	1.38×10 ¹⁴	76.8
2009 PB-AHTR*	6.95×10^{13}	4.04×10^{14}	17.2
2011 AHTR*	6.18×10^{13}	3.64×10^{14}	17.0

* FHR Materials, Fuels and Components White Paper, UCBTH-12-003, July 2013.

Slow, stepped startup with fine control through melting
 Experimented operated at 700±3°C for 1000 hours

ICSA Irradiation Facility

Tritium Measurements

- First irradiations attempted combination of real-time and integrated measurements
 - Dual compensated ion chambers used to measure real-time tritium activity
 - Six-pass water bubbler system with catalytic furnace to capture tritium in water for later liquid scintillation counting (LSC)
- This system should allow separate collection of soluble (TF, HTO, T₂O) and nonsoluble (HT, T₂) species
- Bubbling with LSC has been is highly repeatable with good capture efficiency, and allows differentiation of H-3, C-14 activity

 Released activity below range of ion chamber sensitivity/background rejection

FS-1 Initial Findings – Tritium Activity

- Tritium counts integrated over 24-48 hour intervals
- Tritium collected during startup was ~10% of predicted production
- Subsequently, collected less than 1% of production
- Capsule and thimble tritium levels similar

FS-1 Initial Findings - Solubility

- Tritium collected in initial impingers expected to be only water-soluble form,
 - Post-catalyzing furnace the previously nonsoluble species will be captured
- Only non-soluble species (T₂) should be released through diffusion
- Additional tests are required to identify species to explain apparent contradiction

FS-2 Loading

Added C/C and matrix
graphite, removed
Hastelloy

Redox potentials straddle the historical MSRE potential (-665 to -707 kJ/mol F₂)

Graphite Holder	Compart- ment	Material	Flibe F ₂ Potential (kJ/mol)
Upper	А	Graphites	-632
	В	SiC/SiC, TRISO	-632
	С	SiC/SiC, TRISO	-711
Lower	А	C/C	-632
	В	SS316	-632
	С	SS316	-711

FS-2 Loading

FS-2 In-Core Facility Design

Legend:

White – Aluminum dummy element Blue – Titanium thimble Orange – Nickel capsule Yellow – Internal nickel parts Gray – Graphite sample/flibe holder

Graphite cross-section

FS-2 Position (A-1)

FS-2 Irradiation History

- First startup did not reach the flibe melting point
 - Reduction in power to 50kW for maintenance (~50°C)
- Eventual startup to 700°C was uneventful
- Unrelated reactor SCRAM at 300hrs, restart attempt
- After several days of troubleshooting, performed short test to 3MW, then removed experiment

Tritium Release vs. Source Term

- Capsule and thimble gas tritium levels similar
 - Easy diffusion through capsule
- Majority of tritium is immediately soluble in water
 - Additional catalyzing had small effect
- Tritium release rate increases during temperature changes
- Tritium release during normal operation (5.5MW, 700°C) is same order of magnitude as FS-1 (<1% of generation)</p>

Bromine was detected in tritium collection system

Bromine Release

- Only from capsule gas
- Here contrasted with Ar-41, an expected He impurity
- Highest Br levels when at low power – flibe is solid

Not detected at full power, 700°C

FS-2 Gaseous Release Test

- Following the SCRAM, conducted a test to 3 MW to allow additional sampling
 - Added glass, paper, and charcoal filters prior to tritium capture bubblers
 - Activation products only seen from capsule
- Molybdenum release and capture on filters highest from 0-2MW (<200°C)</p>
- W and Mo captured on glass and paper filters effectively, not on charcoal
- Br not captured on filters, minimal tritium capture on filters
- Experiment removed from reactor following the test

Post-Irradiation Examination

- FS-1 and FS-2 irradiation capsules extracted from in-core facility and transferred to Hot Box and Hot Cell, respectively
- Pressurized with helium to prevent moisture uptake
- Exterior condition of titanium pressure vessel and the nickel/Inconel capsule is excellent

Specimen Extraction

- All specimens have been removed from the FS-1 capsule and cleaned of flibe
 Furnace operated in dry helium glove box to prevent HF generation and contain tritium
- Cleaning involved melting and collection of flibe ~500°C, followed by soaking in water at ambient conditions until weight decrease arrested
- Did not see evolution of other activation products or substantial tritium release during salt melting

Initial PIE – Corrosion & Cracking

Massachusetts Institute of Technology

