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It is self-evident that smaller, modular fusion 
devices will accelerate fusion’s development

•  Cost & time ∝ unit volume and mass

! Shippingport:+1954+
“Pilot”+Fission+Plant++ ITER+

Pthermal)(MW)) 230+ 500++
Core)volume)(m3)) 60++ ~1000+
Cost)(2012)US)B$)) 0.6+ ~+20+

Cost)/)volume)(M$/m3)) 10+ ~+20+
Construction)time)(y)) ~+4+ >+20+

!
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It is self-evident that smaller, modular fusion 
devices will accelerate fusion’s development

•  Cost & time ∝ unit volume and mass

•  ITER is an invaluable science experiment for burning plasmas but is 
not an optimized size for modular fusion energy “pilots”
Ø  ITER is a trial of just one fusion concept, fission pilot tried four different cores!

•  Small size and modularity are self-reinforcing: pilots of complex 
engineered systems as small as possible, yet sufficiently capable 
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It is self-evident that smaller, modular fusion 
devices will accelerate fusion’s development

•  Cost & time ∝ unit volume and mass

•  ITER is an invaluable science experiment for burning plasmas but is 
not an optimized size for modular fusion energy “pilots”
Ø  ITER is a trial of just one fusion concept, fission pilot tried four different cores!

•  Small size and modularity are self-reinforcing, make pilots of 
complex engineered systems as small as possible, yet sufficiently 
capable 

! Shippingport:+1954+
“Pilot”+Fission+Plant++ ITER+

Pthermal)(MW)) 230+ 500++
Core)volume)(m3)) 60++ ~1000+
Cost)(2012)US)B$)) 0.6+ ~+20+

Cost)/)volume)(M$/m3)) 10+ ~+20+
Construction)time)(y)) ~+4+ >+20+

!

Sounds like a reasonable 
strategy but 

how do you do it?



5Whyte, SOFE, 06/15 

Confinement physics strongly favors high B to 
produce fusion capable devices at smaller size

 
nT τ E ∼

βNH
q*
2 R1.3B3

  

Pfusion
Swall


βN

22

q*
2 RB4Gain

Power
density

R (m) 2.14

V (m3) 30

Bo (T) 10

Qp >10

Steady-
state No

Tritium
breeding No

Qelectric 0

V ∝ R3

Copper coil
pulse ~ 10 s
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Confinement strongly physics favors high B to 
produce fusion capable devices at smaller size

 
nT τ E ∼

βNH
q*
2 R1.3B3

  

Pfusion
Swall


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q*
2 RB4Gain

Power
density

R (m) 2.14

V (m3) 30

Bo (T) 10

Qp >10

Steady-
state No

Tritium
breeding No

Qelectric 0

V ∝ R3

Copper coil
pulse ~ 10 s Continuous /w

High-B 
Superconductors?
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Basic geometry favors demountable magnets to 
provide modularity for internal components

FNSF-AT V. Chan  et al NF 2011 

😀

😕
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ARC conceptual design example of “smaller, sooner” 
fusion device using new superconductors  

ARC:   R ~ 3.2 m
JET:   R ~ 3 m 

~4 years construction

REBCO superconductor B = 9.2 T Copper,  B = 3.5 T

Pfusion ~10 MWx B4Pfusion ~ 500 MW
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ARC conceptual design example of “smaller, sooner” 
modular fusion devices using new superconductors  

•  Demountable magnetic 
field coils

•  Single-unit vertical lift

B. Sorbom et al FED 2015      SP6-62 Tue pm  

Small, modular design features 
generically attractive to your 

favorite MFE choice: ���
ST, stellarator, liquid wall etc.
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Multiple, linked engineering design 
challenges to smaller, modular path

Challenges

Bcoil > 20 T

SC Joints

Demountable coils

Small radial build 
neutronics

Internal components with 
small space +���

high power density
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Multiple, linked engineering design 
challenges to smaller, modular path

Challenges

Bcoil > 20 T

SC Joints

Demountable coils

Small radial build 
neutronics

Internal components with 
small space +���

high power density

Opportunities /w new technology

REBCO superconductors

REBCO: tape form
REBCO: T~ 25 K

Immersion liquid blanket

Additive manufacturing of ���
single-unit VV/PFC with 

advanced cooling capability
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Multiple, linked engineering design 
challenges to smaller, modular path

Challenges

Bcoil > 20 T

SC Joints

Demountable coils

Small radial build 
neutronics

Internal components with 
small space +���

high power density

Opportunities /w new technology

REBCO superconductors

REBCO: tape form
REBCO: T~ 25 K

Immersion liquid blanket

Additive manufacturing of ���
single-unit VV/PFC with 

advanced cooling capability

REBCO superconductors  &
Additive Manufacturing (3D printing)

are new and rapidly developing 
technologies, so this is necessarily

“work in progress”
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A revolution in 
superconductors 
in last 5 years:���

REBCO ���
(Rare-Earth Barium 
Cu Oxide) remain 

superconducting 
at VERY ���

high B-field and 
above liquid He 

temperatures 

jcrit
 (MA/m2)

103

102 Superconductor
         REBCO
         Nb3-Sn 

superconducting

normal

superconducting

normal

Superconductor
fraction of coil 

10%

20%

4%

R=3 m, A=3, shield~0.8m

practical coil 
design limit

structural stress limits
in stainless steel

Structure
stress (GPa)

0.4

0.6

0.8

1.0

0.2

Maximum B field on coil (Tesla)
12 14 16 18 20 22 24

moderate field, large device
Nb-Sn operating space

(e.g. ITER)

high-field target
for compact 

fusion devices

high-field coil
primarily limited by stress
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REBCO: coated superconductors in ���
robust tape form, commercially available

•  Strong in tension due to steel 
•  Flexible
•  Outer Cu coating à simple 

solder low-resistance joint
•  Stark contrast with NbSn 

superconductor strand & CIC!

REBCO tape composition
(not to scale)
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REBCO superconductors performance is constantly 
improving for application in high-B coils:���
E.g. Challenge of field anisotropy in jcrit

B

tape

B

tape
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REBCO superconductors performance is constantly 
improving for application in high-B coils:���

E.g. Field anisotropy in jcrit nearly eliminated last year
“Progress in coated conductor 
development for high magnetic field 
applications.” V. Selvamanickam, et al.
U. Houston Superconductor Workshop, 
Napa, CA  Feb. 2015
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Making coils from REBCO: ���
“No-insulator” tape winding highly attractive

•  Steel is “internal” insulator for 
each turn

•  Benefits
Ø  Simple
Ø  Improved mechanical strength
Ø  Radiation resistance���

(insulators weakest link)
Ø  Self-protecting in quenches

S. Hahn et al.  App Phys Lett 173511 (2013)  
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No-insulator coil self-heals via internal 
redistribution of j à “Single-turn mode”���

à Immediate drop in B, energy distributed in coil

Yanagisawa et al.  Physica Scripta C (2014) 40
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“No-insulator” winding provides intrinsic 
quench protection in coil.

Quench at 9 Tesla: No damage to���
stacked double pancake coil (2014)

S. Hahn et al.  Bitter Magnet Lab, MIT



20Whyte, SOFE, 06/15 

Large coils made with REBCO actually require 
joints: Contact resistance at low-T is acceptable 

26 stacked coils
~300 m/coil consistent 

with maximum 
continuous length of 

high-performance tape

•  Soldered joints!
•  Mechanical attachment 

lowers resistance
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April 2015: New record of 26.5 Tesla���
with REBCO-only, “no-insulation” coil 

S. Hahn, J.M. Kim, et al.
NNFML, FSU,  SUNAM, MIT  
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Scaled-down REBCO coil matches ���
 most requirements for ARC design

Bcoil(T) 26.5 23

Je (A/mm2) 400 400-500

T (K) 4.2 25

Materials REBCO, SS316L

σmax (MPa) 593 660

Diameter (m) 0.03 ~ 6
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Large-bore challenge for high-B MFE magnet: 
requires optimized geometry & superstructure

1. Support ring,  2. Top TF leg ���
4. Mechanical joint ���
6. Epoxy enforcement

Peak stress ~ 0.67 Gpa
~65% of limit for 316SS LN

Bcoil = 23 T
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Demountable TF coil: Evolving strategy à 
Separation of mechanical and electrical joints

F. Mangiorotti, J. Minervini
MIT  Ph.D. thesis
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One design example: ���
Plate terminations with edge joints
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One design example: ���
Plate terminations with edge joints

F. Mangiorotti, J. Minervini
MIT  Ph.D. thesis
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Operation of joints above 4 K liquid He 
temperatures is highly advantageous

•  Greatly reduces 
required cooling power 
(Carnot).

•  Thermal stability due 
to higher heat capacity.

•  Operation or ARC at 
T~25 K
Ø  Small power to 

joints
Ø  Liquid H or Ne for 

cooling options Copper FNSF-AT���
Coil Pcoil~500 MW

ARC: Resistive joints /w
REBCO superconductors ���

Coil Pcoil~ 1 MW

R/a=3.5 R/a=3
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Demountability seems complicated…���
is it really worth it?  Yes, for FNSF/Pilot

•  Demountable design transfers 
complex, integrated risk away from 
the speculative nuclear components 
and places it on “non-nuclear” 
mechanical/electrical engineering.���

Ø  Nuclear components have 
“Catch-22” problem: needs 
FNSF to test its own 
components!���

Ø  Can demonstrate demountable 
joints at small scale.���

Ø  Device maintenance with 
modular coils: single leg failure 
of TF can be tolerated

Copper FNSF ARC
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Demountable coils have a profound effect on 
modularity and design of interior fusion “core”

•  Core is designed as a single 
integrated unit
Ø  PFCs, vacuum vessel, 

blankets
Ø  Synergy with keeping 

design of small total mass 
and volume

•  Fabrication + qualification 
done completely off-site 
Ø  Vacuum
Ø  Heating
Ø  Cooling

•  No connections made inside TF

Replaceable
“core”���
module
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Modular core can have a profound effect on 
fusion design: e.g. the immersion blanket

•  VV is right beside plasma
•  VV is immersed in liquid blanket

Advantages

•  Simple
•  Neutronics/nuclear engineering at 

atmospheric pressure.
•  No gaps
•  Energy & tritium extraction with 

single-phase low-velocity flow
•  No DPA limits in blanket
•  Minimized solid waste
•  Tub is robust safety boundary

Plasma
+ 14 MeV
neutrons

VV

Li
qu

id
 b

la
nk

et

Liquid “tub”

co
il

Support

Liquid flow in

RF, fuel Liquid flow out
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Immersion blanket: Many liquid choices & lack of  
internal structure optimize neutron thermalization, ���

energy capture and tritium breeding à Small radial build 

Distance into the 200 cm blanket (cm)
0 20 40 60 80 100 120 140 160 180 200

H
ea

tin
g 

(G
W

)

0.6
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1.0
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1.8
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2.2
2.4
2.6

83Pb17Li
 (E=90%)83Pb17Li

FLiBe
FLiBe (E=90%)
Li (nat)
Li (E=90%)
LiH
LiD

Heating with 2mm W first wall, 2.54cm Inconel-625 vessel

MCNP
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Immersion blanket: Many liquid choices & lack of  
internal structure optimize neutron thermalization, ���

energy capture and tritium breeding à Small radial build 

Distance into the 200 cm blanket (cm)
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Immersion blanket: Solid, replaceable components ���
(plasma-facing materials, vacuum vessel) receive 

minimized neutron damage immersed in low-Z fluid

LiPb eLiPb FLiBe eFLiBe Li eLi LiH LiD

D
am

ag
e 

ra
te

 [D
PA

/y
ea

r]

50

60

70

80

90

100

110

120 2Neutron wall loading: 4 MW/m

2Wall area = 533 m

Uptime: 2.9e7 s (11 months)

Damage to the Inconel-625 primary vacuum vessel

MCNP

Z. Hartwig, C. Haakonsen    MIT
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While in many ways, immersion blanket is ideal 
(see fission!) it does limit areal access to plasma

•  Heating, pumping, 
diagnostics must wind 
through supports

•  ARC: Total ~ 4-5 m2

Ø  RF heating: ~1 m2

Ø  Support: ~ 1-2 m2

Ø  Pumping ~ 0.5 m2

•  Tradeoff: more port area vs. 
TBR, neutron streaming

Section of toroidal ring:
Top part of modular core

pe
rm

an
en

t t
ub
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Immersion blanket: Very large heat sink in close 
proximity to internals provides fundamental 

improvement in heat exhaust
External
motor

In
te

rn
al

 p
um

ps
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Immersion blanket: high-T molten salt FLiBe���
Single-phase, low-pressure flow with ���

minimum MHD effects
External
motor

In
te

rn
al

 p
um

ps

•  TBR ~ 1.14
•  High thermal efficiency ~ 0.4 - 0.5
•  Shielding: ~10 FPY coil lifetime 

FLiBe
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Immersion blanket: high-T molten salt FLiBe���
Single-phase, low-pressure flow with ���

minimum MHD effects
External
motor

In
te

rn
al

 p
um

ps

•  TBR ~ 1.14
•  High thermal efficiency ~ 0.4 - 0.5
•  Shielding: 10 full-power coil lifetime 
•  Exploit FLiBe + Immersion blanket + 

Additive manufacturing to address ���
high heat flux regions?

FLiBe

3D printed car
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2 mm 
thick

 W tile  

Preliminary study: Improved surface heat removal 
with FLiBe + 3-D printed cooling channels

Next major design study: ARC divertor & cooling

10 MW m-2

W

Flibe

W

Flibe

2 mm 
thick

 W tile
+

Internal
Fin  

10 m/s

~ 1 bar
pressure
drop

L. Zhou, R. Vieira   MIT
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Strong benefits of 3D printing for actively 
cooled launchers too 

Example RF antennae strap
 Integrated, near-surface cooling channels ���

impossible /w standard manufacturing  

S. Wukitch
Tue pm
SO15
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New technologies provide access to synergistic 
physics design advantages at high-B and small size:���

High-field side launch à + 50% CD efficiency

Launch
point

FNSF-AT
ARC

Wallace SP3-39  



41Whyte, SOFE, 06/15 

New technologies provide access to synergistic 
design advantages at high-B and small size:���

Robust steady-state far from disruptive limits

DIII-D ARIES-AT ARC
q95 6.3 3 7 .2
H98 1.5 1.7 1.7
βN 3.7 5.4 2.6

G = βNH98/q2 0.14 0.90 0.09
fbootstrap 0.65 0.91 0.63

n / nGreenwald 0.5 0.9 0.65

•  Steady-state scenario using high safety-factor, 
moderate Beta approach

•  Scenario ACHIEVED in present moderate-B 
devices (e.g. DIII-D)

 
nT τ E ∼

βNH
q*
2 R1.3B3

  

Pfusion
Swall

∼
βN

2ε2

q*
2 RB4
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Modularity and small size should be enabling to 
solving critical issue of divertor heat exhaust

•  Large linear size, low B 
unfavorable for heat 
exhaust
Ø  At fixed fusion power 

density, Eich scaling à ���
q// ~  R B

Ø  Lawson criterion: R ~ 1/B2.3

Ø  q// ~ 1 / B1.3

•  Advanced divertor coils 
built into modular core as 
replaceable components
Ø  Exploit physics advances 

from expanded volume 
divertors

ADX presentations ���
LaBombard SO10-3 Tue AM
Posters: SP3  Tue PM
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Near-term, small-scale research can pursue this 
exciting path for fusion energy
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The disruptive innovation of high field, 
high-T superconductors

Superconductor
Demountable
High-B coils

Steady-state

Operation robustness

Small &���
Modular

Liquid
blanket

Smaller, sooner
Viable fusion energy
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Summary

•  Fusion is hard …as a community we need to be continually 
looking for both technology and science innovations that will 
accelerate fusion’s development

•  Exciting technology opportunities recently available: ���
High-temperature, high-field superconductors ���
Additive manufacturing

•  Conceptual reactor design shown here give a sense of 
technology limits and integrated effects on magnetic fusion…
those effects appear to be positive and revolutionary

•  The near-term pace of fusion science development will also 
be accelerated by exploiting these technologies


