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Outline  

•  Tritium Source Generation 
–  Planned for Georgia Tech 

•  Design, Testing, Demonstration, and Modeling of Heat 
Exchangers for FHRs 
–  Ongoing at Ohio State University 
–  Heat Exchanger Design 

–  Tritium Permeation Barrier Coating 

•  Tritium Control/Mitigation Strategy for FHRs 
–  Redox Control Facility  
–  Tritium Removal Facility 

–  Planned Experiments 
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Tritium Source Generation 
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•  INTRODUCTION 
•  Georgia Tech: Timothy Flaspoehler 

–  Advisor (Bojan Petrovic) 

•  Use neutron transport to calculate 
accurate tritium source in FHR 
–  Full-core 
–  Time-dependent 

•  Funding doesn’t start till 2nd fiscal year 
Pathway MT #  Scale6.1  
Ternary Fission  18 (x%yield) YES  
6Li (n, α) 3H or  
6Li (n, t) 4He  

107  
105  

NO  
YES  

7Li (n, nα) 3H or  
7Li (n, nt) 4He or  
7Li (n, Xt)  

22 / 105  
33  

NO / NO  
NO  
*YES  

10B (n, 2α) 3H or  
10B (n, t2α)  

108  
113  

NO  
YES  

10B (n, α) 7Li (n, nα) 3H  107 & 22  YES & NO  



Tritium Source Generation 
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PREVIOUS WORK 

•  BACKGROUND: VHTR / 
NGNP goal to provide heat 
source for industrial 
applications 
–  Also without NRC licensing 

secondary side 
–  Tritium leakage to secondary 

must be below EPA limits 

•  RESULTS: Calculated 
different pathways in full-
core model 
–  Used MAVRIC shielding 

sequence 
–  Globally converged MC tallies 

in reflector 

Tritium production from 4He 
impurities in coolant 



Tritium Source Generation 
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PREVIOUS WORK 
•  RESULTS: Possible underestimate of tritium source in 

VHTR from impurities in graphite reflector 



Design, Testing, Demonstration, and 
Modeling of HXs for FHRs 

•  Design of Heat Exchangers (IHX, SHX, DHX, and NDHX) for 
AHTR, considering Tritium Management and Heat Transfer 
Effectiveness 
–  Goal: To reduce tritium diffusion into the secondary (cold) side while 

maintaining heat transfer rate 

•  Double-wall Heat Exchangers 
–  Fluted tube heat exchanger 
–  Printed circuit heat exchanger 

•  Tritium Permeation Barrier  
–  Located between the outer tube and the inner tube walls 
–  Fluoride salt (FLiNaK/FLiBe)  
–  Sweep gas  
–  Tritium getter 
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Heat Exchanger Design 

•  Ongoing Activity for NDHX in DRACS: Two Preliminary 
Designs being Considered  
–  Option 1: Double-wall NDHX with sweep gas in the annulus 

▪  Inner tube: Allow tritium permeation   
▪  Outer tube: Inhibit tritium permeation (with surface treatment if 

necessary) 
▪  Sweep gas: Pressurized helium 
▪  Tritium: Trapped in the gap and taken away by sweep gas 

–  Option 2: Double-wall NDHX with tritium getter in the annulus 
▪  Gap/annulus filled with a tritium getter (yttrium) to sequester tritium 
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Tritium Permeation Barrier 
Coating 

Surface Treatment: Tritium Permeation Barrier 
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Al2O3 Cr2O3-SiO2 ZrO2 MSZAC W 
Thickness [µm] 0.03-1.4 50 50 50-100 10 

PRF 100-104 292 50 3-4 300 
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Low Tritium Permeability Metal 
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Tritium Permeation Barrier 
Coating (Cont’d) 

•  Tritium Permeation Reduction Factor (PRF) of candidate 
coatings  
 

  

•  Al2O3 Coating Methods 
–  Hot-dip aluminazation  
–  Chemical vapor deposition (CVD) 
–  Sol-gel  

•  Potential Issues with Al2O3 Coating  
–  Integrity is crucial to the surface coating  
–  Cracks can lead to significant decrease in the PRF 
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Permeation flux without coatingPRF= Permeation flux with coating



Tritium Control/Mitigation 
Strategy for FHRs 

•  Generation  
–  Major form of tritium in the core: TF (corrosive) 

•  Redox Control 
–  Beryllium metal is used to convert TF to T2: Be + 2TF à T2 + BeF2 

•  Tritium Removal Facility  
–  Goal: Removal rate similar to the production rate 

–  Cross-flow plate-type T2 removal facility 

•  Tritium Permeation Barrier  
–  FLiNaK/FLiBe could be used as the barrier in intermediate heat 

exchanger (IHX) 

–  Tritium permeation barrier used as the outer wall coating in necessary 
areas 
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Schematic of Tritium Mitigation/
Control System for FHRs 
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* :1. HT exists if H2 is used in the purging gas  
    2. Studies have shown that by adding H2 in the purging gas,  
        T2 removal efficiency can be improved 

* 



Redox Control Facility 

•  Easy Replenishment of Redox Pellets 
•  Modular Design  

–  Located prior to the tritium removal module 

•  Pellet with SS316 Core  
–  Beryllium pellets with a spherical SS316 core 
–  To avoid used (smaller) pellets from being carried away by the 

salt with meshed grids 

12 



Tritium Removal Facility 
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•  Cross-flow Configuration  
–  Purging gas flows in the tube bank  
–  Molten salt flows in the perpendicular direction  
     to the tube bank  
–  Increase the salt flow turbulence level 

•  Modular Design 
–  Located after the redox control facility  
–  Flexibility for applications of different tritium removal rates  

 

Side view Front view Top view 

Cut view of a unit cell of 
the facility  



Computational Simulation 
Using COMSOL 
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•  Plot of Salt  Flow 
Streamlines  
–  Main streamlines are 

splitted each time as they 
meet the next row of 
tubes 

•  Plot of H2 Concentration 
Distribution in the Molten Salt 
–  Transport coefficients of H2 instead 

of T2 in FLiBe used due to the lack 
of data 

–  H2 concentration decreases quickly 
along the salt flow path 



Results from COMSOL 

•  Comparison of Tritium Removal Facility Models 
•  Main Variables 

–  Tube size 
–  Tube pitch  
–  Salt inlet flow velocity 
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Code Calculation Using 
MATLAB 

•  Overall Mass Transfer Coefficient ko  

•  Corresponding Dimensionless Groups of Mass and Heat Transfer  
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−  Sherwood number is 
calculated using the 
correlations for Nusselt 
number: heat transfer 
coefficient h replaced with 
mass transfer coefficient kx 
and thermal conductivity k 
replaced with diffusivity DAB 

−  The concept of heat transfer 
resistance is applied to 
mass transfer using 
corresponding parameters 
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Facility Design Comparisons 
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−  Fluoride salt flow rate from the AHTR preliminary design  
−  Tritium inlet concentration is raised to 10 times of that equivalent to 

the tritium production rate in the core  

  Dimension Set A Dimension Set B 

Mass flow rate of molten salt [kg/s] 11190.8 

Tritium inlet concentration [mol/m3] 1.8 × 10-6 

Tritium outlet concentration [mol/m3] 1.62 × 10-6 

Tritium removal rate [mol/s] 1.8 × 10-7 

Tube OD [in] 1.050 1.315 

Tube ID [in] 0.824 1.049 

Tube wall thickness [in] 0.113 0.133 

Tube bank pitch [in] 1.31 
(Pitch/OD = 1.25) 

1.64 
(Pitch/OD = 1.25) 

Tube length [in] 18 18 

Tube number  49971 41365 

Molten salt inlet frontal velocity [m/s] 1.0 1.0 

Re   4.64×104 5.82×104 

Molten salt inlet flow area [m2] 5.54 
(2.35 × 2.35) 

5.54 
(2.35 × 2.35) 

Total mass transfer area [m2] 9.85 × 103 1.02 × 104 

Molten salt flow length estimated [m] 
20.61 

(in the direction normal 
to the tube bank) 

26.72 
(in the direction normal 

to the tube bank) 

Molten salt frictional pressure loss [kPa] 197 189 



Contact Information 

•  Georgia Tech: 
–  Timothy Flaspoehler 
–  Email: timothy.flaspoehler@gatech.edu 

–  Bojan Petrovic 
–  Email: bojan.petrovic@gatech.edu 

•  Ohio State University 
–  Xiaodong Sun 
–  Email: sun.200@osu.edu 
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