

Tritium Management in FHRs

Ongoing and Planned Activities in Integrated Research Project Led by Georgia Tech

Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Experiments, Models and Benchmarking

> Timothy Flaspoehler and Bojan Petrovic Georgia Tech

Xiao Wu, Sheng Zhang, Richard Christensen, and Xiaodong Sun The Ohio State University

Work Supported by DOE Nuclear Energy University Programs

U.S. Department of Energy

- Tritium Source Generation
 - Planned for Georgia Tech
- Design, Testing, Demonstration, and Modeling of Heat Exchangers for FHRs
 - Ongoing at Ohio State University
 - Heat Exchanger Design
 - Tritium Permeation Barrier Coating
- Tritium Control/Mitigation Strategy for FHRs
 - Redox Control Facility
 - Tritium Removal Facility
 - Planned Experiments

INTRODUCTION

Georgia Tech

- Georgia Tech: Timothy Flaspoehler
 - Advisor (Bojan Petrovic)
- Use neutron transport to calculate accurate tritium source in FHR
 - Full-core
 - Time-dependent
- Funding doesn't start till 2nd fiscal year

Pathway	MT #	Scale6.1
Ternary Fission	18 (x%yield)	YES
⁶ Li (n, α) ³ H or	107	NO
⁶ Li (n, t) ⁴ He	105	YES
⁷ Li (n, nα) ³ H or ⁷ Li (n, nt) ⁴ He or	22 / 105 33	NO / NO NO
¹ LI (II, \land L)	100	TES
¹⁰ B (n, t2 α)	113	YES
¹⁰ Β (n, α) ⁷ Li (n, nα) ³ Η	107 & 22	YES & NO

PREVIOUS WORK

Georgia

Tech

- BACKGROUND: VHTR / NGNP goal to provide heat source for industrial applications
 - Also without NRC licensing secondary side
 - Tritium leakage to secondary must be below EPA limits
- RESULTS: Calculated different pathways in fullcore model
 - Used MAVRIC shielding sequence
 - Globally converged MC tallies in reflector

Tritium production from ⁴He impurities in coolant

Georgia Tech

PREVIOUS WORK

• RESULTS: Possible underestimate of tritium source in VHTR from impurities in graphite reflector

Table 3.1.1 Comparison of tritium generation rates in VHTR estimated in [3.1.1] and [3.1.2]Values based Ref. on [3.1.1]New estimate in Ref. [3.1.2]

Pathway	Activity (Bq/y)	Production (t/s)	Activity (Bq/y)	Production (t/s)	Ratio (C/A)
Ternary Fission	1.03E+14 (62.0%)	1.83E+15	1.03E+14 (29.8%)	1.83E+15	1.00
From ³ He	2.98E+13 (18.0%)	5.30E+14	1.43E+13 (4.1%)	2.53E+14	0.48
From ⁶ Li	2.32E+13 (14.0%)	4.12E+14	1.78E+14 (51.6%)	3.16E+15	7.67
Core Graphite	3.31E+12 (2.0%)	5.89E+13	5 45E+12 (15 894)	$0.68E \pm 1.4$	274
Core Matrix	1.66E+13 (10.0%)	2.94E+14	$\left.\right\}$ 5.45E+15 (15.6%)	9.06E+14	2.74
Reflector	3.32E+12 (2.0%)	5.88E+13	1.23E+14 (35.8%)	2.19E+15	37.24
From ¹⁰ B	1.49E+13 (9.0%)	2.65E+14	5.00E+13 (14.5%)	8.89E+14	3.36
Control Rod	1.16E+13 (7.0%)	2.06E+14	4.35E+13 (12.6%)	7.74E+14	3.75
Absorber	1.66E+12 (1.0%)	2.94E+13	4.51E+12 (1.3%)	8.02E+13	2.72
Reflector	1.66E+12 (1.0%)	2.94E+13	2.00E+12 (.6%)	3.56E+13	1.21
Total	1.71E+14	3.03E+15	3.45E+14 (100.0%)	6.13E+15	2.02
Total (Bq/y/MWt)	2.84E+11		7.88+11		2.77

- Design of Heat Exchangers (IHX, SHX, DHX, and NDHX) for AHTR, considering Tritium Management and Heat Transfer Effectiveness
 - Goal: To reduce tritium diffusion into the secondary (cold) side while maintaining heat transfer rate
- Double-wall Heat Exchangers
 - Fluted tube heat exchanger
 - Printed circuit heat exchanger
- Tritium Permeation Barrier
 - Located between the outer tube and the inner tube walls
 - Fluoride salt (FLiNaK/FLiBe)
 - Sweep gas
 - Tritium getter

- Ongoing Activity for NDHX in DRACS: Two Preliminary Designs being Considered
 - Option 1: Double-wall NDHX with sweep gas in the annulus
 - Inner tube: Allow tritium permeation
 - Outer tube: Inhibit tritium permeation (with surface treatment if necessary)
 - Sweep gas: Pressurized helium
 - Tritium: Trapped in the gap and taken away by sweep gas
 - Option 2: Double-wall NDHX with tritium getter in the annulus
 - Gap/annulus filled with a tritium getter (yttrium) to sequester tritium

Tritium Permeation Barrier Coating

7

Surface Treatment: Tritium Permeation Barrier

Barrier	Base Metal	PRF	
Al ₂ O ₃	SS316, MANET, TZM, Ni, Hastalloy-X	10 to >10,000	
TiC, TiN, TiO ₂	SS316, MANET, TZM, Ti	3 to >10,000	
Cr ₂ O ₃	SS316	10 to 100	
Si	Steels	10	
BN	304SS	100	
Ν	Fe	10 to 20	
Er ₂ O ₃	Steels	40 to 700	

	Al ₂ O ₃	Cr ₂ O ₃ -SiO ₂	ZrO ₂	MSZAC	W
Thickness [µm]	0.03-1.4	50	50	50-100	10
PRF	100-10 ⁴	292	50	3-4	300
References	Levchuk (2004); Yang (2011); Forcey (1991); Forcey (1989)	Nakamichi (2007)	Nakamura (2010)	Nakamura (2010)	Moir (1984)

THE OHIO STATE UNIVERSITY Low Tritium Permeability Metal

Figure 8.10-18 Permeation coefficient of tritium through metals.

• Tritium Permeation Reduction Factor (PRF) of candidate coatings

 $PRF = \frac{Permeation flux without coating}{Permeation flux with coating}$

- Al₂O₃ Coating Methods
 - Hot-dip aluminazation
 - Chemical vapor deposition (CVD)
 - Sol-gel
- Potential Issues with Al₂O₃ Coating
 - Integrity is crucial to the surface coating
 - Cracks can lead to significant decrease in the PRF

- Generation
 - Major form of tritium in the core: TF (corrosive)
- Redox Control
 - − Beryllium metal is used to convert TF to T_2 : Be + 2TF → T_2 + Be F_2
- Tritium Removal Facility
 - Goal: Removal rate similar to the production rate
 - Cross-flow plate-type T₂ removal facility
- Tritium Permeation Barrier
 - FLiNaK/FLiBe could be used as the barrier in intermediate heat exchanger (IHX)
 - Tritium permeation barrier used as the outer wall coating in necessary areas

Schematic of Tritium Mitigation/ Control System for FHRs

- * :1. HT exists if H_2 is used in the purging gas
 - 2. Studies have shown that by adding H_2 in the purging gas,
 - T₂ removal efficiency can be improved

- Easy Replenishment of Redox Pellets
- Modular Design
 - Located prior to the tritium removal module
- Pellet with SS316 Core
 - Beryllium pellets with a spherical SS316 core
 - To avoid used (smaller) pellets from being carried away by the salt with meshed grids

Tritium Removal Facility

- Cross-flow Configuration
 - Purging gas flows in the tube bank
 - Molten salt flows in the perpendicular direction to the tube bank
 - Increase the salt flow turbulence level
- Modular Design
 - Located after the redox control facility
 - Flexibility for applications of different tritium removal rates

Cut view of a unit cell of the facility

Computational Simulation Using COMSOL

- Plot of Salt Flow Streamlines
 - Main streamlines are splitted each time as they meet the next row of tubes
- Plot of H₂ Concentration
 Distribution in the Molten Salt
 - Transport coefficients of H₂ instead of T₂ in FLiBe used due to the lack of data
 - H₂ concentration decreases quickly along the salt flow path

15

- **Comparison of Tritium Removal Facility Models** •
- **Main Variables** ullet
 - Tube size
 - Tube pitch
 - Salt inlet flow velocity

Distribution of pressure drop and facility volume

Code Calculation Using MATLAB

Overall Mass Transfer Coefficient k

$$\left(\frac{1}{k_o H_s}\right)^{\sqrt{2}} = \left(\frac{1}{k_s H_s}\right)^{\sqrt{2}} + \left[\frac{t_w}{K_w} \frac{(p_{1,in}^{0.5} - p_2^{0.5}) - (p_{1,out}^{0.5} - p_2^{0.5})}{\ln(\frac{p_{1,in}^{0.5} - p_{2,in}^{0.5}}{p_{1,out}^{0.5} - p_{2,in}^{0.5}})}\right]$$

Г

• Corresponding Dimensionless Groups of Mass and Heat Transfer

No.	Mass transfer	Heat transfer
	Reynolds number	Reynolds number
1	$\operatorname{Re} = \frac{\rho v D}{\mu}$	$\operatorname{Re} = \frac{\rho v D}{\mu}$
	Schmidt number	Prandtl number
2	$Sc = \frac{\mu}{\rho D_{AB}}$	$\Pr = \frac{c_p \mu}{k} = \frac{\nu}{\alpha}$
	Sherwood number	Nusselt number
3	$\mathrm{Sh} = \frac{k_x D}{D_{AB}}$	$Nu = \frac{hD}{k}$
	Peclet number	Peclet number
4	Pe = ReSc	Pe = ReSc
		Grashof number
	Grashof number	$Gr = gD^3 \rho^2 \beta(\Delta T)$
5	$Gr = \frac{gL^3(\Delta \rho)}{(\Delta \rho)}(\frac{\rho}{\rho})^2$	μ^2
	$\rho \mu'$	β =coefficient of
		expansion
	Stanton number	Stanton number
6	$St = \frac{Sh}{St} = \frac{Sh}{St}$	$St = \frac{Nu}{Nu} = \frac{Sh}{St}$
	ReSc Pe	RePr Pe

- Sherwood number is calculated using the correlations for Nusselt number: heat transfer coefficient *h* replaced with mass transfer coefficient k_x and thermal conductivity *k* replaced with diffusivity D_{AB}
- The concept of heat transfer resistance is applied to mass transfer using corresponding parameters

 $\sqrt{2}$

THE OHIO STATE UNIVERSITY Facility Design Comparisons

	Dimension Set A	Dimension Set B
Mass flow rate of molten salt [kg/s]	11190.8	
Tritium inlet concentration [mol/m ³]	1.8 × 10 ⁻⁶	
Tritium outlet concentration [mol/m ³]	1.62 × 10⁻ ⁶	
Tritium removal rate [mol/s]	1.8 × 10 ⁻⁷	
Tube OD [in]	1.050	1.315
Tube ID [in]	0.824	1.049
Tube wall thickness [in]	0.113	0.133
Tube bank pitch [in]	1.31 (Pitch/OD = 1.25)	1.64 (Pitch/OD = 1.25)
Tube length [in]	18	18
Tube number	49971 41365	
Molten salt inlet frontal velocity [m/s]	1.0	1.0
Re	4.64×10 ⁴	5.82×10 ⁴
Molten salt inlet flow area [m ²]	5.54 (2.35 × 2.35)	5.54 (2.35 × 2.35)
Total mass transfer area [m ²]	9.85 × 10 ³	1.02 × 10 ⁴
Molten salt flow length estimated [m]	20.61 (in the direction normal to the tube bank)	26.72 (in the direction normal to the tube bank)
Molten salt frictional pressure loss [kPa]	197 189	

- Fluoride salt flow rate from the AHTR preliminary design
- Tritium inlet concentration is raised to 10 times of that equivalent to the tritium production rate in the core

- Georgia Tech:
 - Timothy Flaspoehler
 - Email: timothy.flaspoehler@gatech.edu
 - Bojan Petrovic
 - Email: bojan.petrovic@gatech.edu
- Ohio State University
 - Xiaodong Sun
 - Email: sun.200@osu.edu