HYDROGEN – CARBON INTERACTIONS

A BRIEF LITERATURE SURVEY

Cristian Contescu
Tim Burchell

Oak Ridge National Laboratory
Materials Science and Technology Division
Oak Ridge, TN 37831 USA

Workshop on Tritium Control and Capture in Salt-Cooled and Fusion Reactors

Salt Lake City, October 27-28, 2015
Hydrogen retention mechanisms

- **Molecular H2 physisorption on porous carbons**
 - Significant at cryogenic temperatures
 - Decreases with increase of temperature
 - Well documented from prior work on H2 storage

- **Atomic H chemisorption**
 - Lower saturation capacity
 - Not as much investigated as physisorption
 - Temperature dependence may be sensitive to structural factors and state of the surface

- **Molecular H2 trapping / solubility**
 - Mixed mechanism (molecular diffusion / chemisorption)
 - Sensitive to structural factors, irradiation

Theory and modeling

• DFT calculations:
 - Dissociative chemisorption of H2 on armchair sites requires high activation energy
 - Dissociative chemisorption on zig-zag sites is easier (no activation)
 - H atom chemisorption on basal planes requires pocking of a C atom from its planar position and requires activation energy
 - The crucial step is H2 dissociation which is energetically demanding

H retention on graphite

- Retention and diffusion of H2 on isotropic graphite from Toyo Tanso
 - At 1000 C and 1 bar, H2 uptake leads to loading of up 20-600 ppm (based on pressure drop)
 - Diffusion and trapping in the graphite structure
 - Two types of trapping sites proposed (based on thermodesorption data)
 - Enhanced trapping on defective and irradiated graphite

Trapping sites in graphite

- Two types of trapping sites
 - Dangling bonds at crystallite edges (2.6 eV)
 - Interstitial sites inside crystallites (4.4 eV)
- The prevalence of each type of sites varies with irradiation fluence

- Thermodesorption of H2 trapped in isotropic graphite is similar to that from graphite mechanically milled in a hydrogen atmosphere

 Orimo, J Appl Phys 90 (2001) 1545

- The nature of trapping sites in graphite is still debated

Deuterium in graphite

- D2 thermodesorption from isotropic graphite exposed to D2 at various temperatures
 - Solubility is proportional with $P^{1/2}$
 - Three main desorption peaks
 - Evidence of various trapping sites
 - Very small CD4 desorption was found

Tritium in graphite and PyC

- **Diffusion and solubility in PyC**
 - T2 diffusion in PyC is much lower than in metals, and activation energy is high, suggesting chemical bonding
 - D2 solubility in PyC suggests a dissociative mechanism (varies with $P^{1/2}$)
 - PyC suggested as an effective barrier for T implantation in fusion reactors

 Causey, Carbon 17 (1949) 323

- **Retention of D+ and T+ ions in POCO graphite**
 - Plasma exposure to 100 eV ions below 500 K causes fast saturation
 - Between 500-1000 K diffusion along pore surfaces occurs deep in the sample
 - Above 1000 K the isotopes penetrate graphite and decorate high energy traps

Thermal release of tritium

- Thermal release of T2 from irradiated graphite
 - T2 is released as HT, and also as HTO (if oxidation occurred)
 - The release temperature increases with the increase of neutron fluence received by graphite

- Thermal release of T2 implanted in fine grain isotropic graphite
 - Detrapping of implanted T starts at ~ 600 K, reaches maximum rate at 1100-1400 K, and is 95% completed at 1600 K
 - On single type of trapping sites was observed
 - High T retention up to high temperature suggests that graphite will retain T inventory after exposure to energetic T ions

Factors affecting H trapping

- Hydrogen trapping in neutron irradiated graphite
 - Neutron irradiation creates high energy trapping sites
 - H atoms diffusivity is 1-2 orders of magnitude lower after irradiation at only 0.047 dpa
 - Irradiation and subsequent annealing of graphite changes substantially the absorption rates

- Hydrogen retention in graphite irradiated at high temperature
 - Irradiation causes damage in graphite structure
 - H retention is significantly reduced at high temperature

Hydrogen thermodesorption

- Thermodesorption spectroscopy from H-implanted graphite
 - Thermodesorption spectroscopy can be used to characterize the energy strength of trapping sites

- Modeling H2 thermodesorption from H+ implanted graphite
 - Study showed the effect of graphite porosity and crystallite size on the number and types of trapping sites

Liu, Nucl Instruments Methods Phys Rev B 269 (2011) 431
Other works

• Modeling of reactive-diffusive transport of hydrogen after ion implantation
 – Release and retention of H in porous graphite depends on the graphite internal structure and on the energy and flux of incident ion beam

• Hydrogen isotopes permeations through carbon materials
 – Measurements of gas pressure driven permeation of isotopes

Perspectives

- Physisorption on high surface area, porous carbons is far more efficient than chemisorption on graphite
 - Requires cryogenic temperatures
 - Can be used in conjunction with a sweep gas (He) to separate T2 from T2/He mixtures
- Retention by carbon elements in contact with the molten salt (pebbles) will be difficult to control given the irradiation effects on carbon
- Salt corrosion effects on carbon (pebbles) will change the hydrogen retention properties