# **Tritium- Control Technologies** for TMSR in CAS

## Wei LIU, Zhimin DAI, Hongjie XU Center for TMSR, CAS 2015-10-28

₩₩₩ 钍基熔盐核能系统





## Outline

- I. Background
- **II. Roadmap** of Tritium-control technologies for TMSR in CAS
- **III. Performances** at the tritium-control

technologies for TMSR in CAS



## I. Background

# 1. Tritium production in TMSR (FLiBe as primary coolant, <sup>7</sup>Li abundance: 99.99%)



┛ ⅢSR 钍基熔盐核能系统

SINAP

## 2. Distribution of Tritium in TMSR



**Emission limit of tritium in 3000MW** nuclear power station in China:1.5E13Bq/a (LWR), 4.5E14 Bq/a (HLR)

Does tritium transport into the cover gas completely? What is the chemical form of tritium?

Tritium removal: necessary and difficult

₩₩ 钍基熔盐核能系统

SINAP

### **3. Considerations of Tritium control for TMSR**

Remove tritium in the first loop as much as possible Prevent tritium permeation into the second loop as much as possible



Ⅲ5 针基熔盐核能系统 SINAP

## **Tritium removal**

Combination of **tritium -storage alloys** and **tritium-oxidation** with the **on-line tritium monitoring** 





## Outline

- I. Background
- **II. Roadmap** of Tritium-control technologies for TMSR in CAS
- **III. Performances** at the tritium-control

technologies for TMSR in CAS

₩₩₩ 私基熔盐核能系统

## II. The Roadmap of tritium-control technologies for TMSR in CAS





## Outline

- I. Background
- **II. Roadmap** of Tritium-control technologies for TMSR in CAS
- **III. Performances** at the tritium-control

technologies for TMSR in CAS



## **1. Tritium behavior**

Interaction of hydrogen isotopes with either of high-temperature molten salt or structural materials

 Test apparatus for diffusion of hydrogen isotopes in hightemperature molten salt





 Test apparatus for permeation of hydrogen isotopes in structural materials ₩₩ 私基熔盐核能系统

SINAP

Diffusion of Hydrogen isotopes (H<sub>2</sub>, D<sub>2</sub>) in high-temperature FLiNaK



₩₩ 私基熔盐核能系统

SINAP

Permeability of hydrogen isotopes in Hastelloy N (left) and GH 3535 (right) alloy





#### 2. Tritium Extraction

Set up gas extraction system in water test loop and the separation efficiency was qualitatively analyzed



Ⅲ5 针基熔盐核能系统

Bubble generator

1 hole



Little effect of number of holes on the bubble size distribution at the flow rate greater than  $15 \text{ m}^3/\text{h}$ ,



**S**eparation efficiency of separator relating with the outlet pressure

▶ 1115 针基熔盐核能系统

### 3. Tritium Separation

#### **Successful separating xenon, krypton and hydrogen from helium environment** using cryogenic technology for tritium separation

Kr、 Xe <1PPb and  $H_2$ <0.1PPM after two-step frozen

SINAP

#### Labview interface

(In-site monitoring 9-way temperature and 4-way pressure pressures as well as data acquisition)





examination of gaseous leak

Detection of temperature and pressure



## 4. Tritium Storage

#### **Complete research platform for tritium storage using alloy**

Testing system for selecting tritium-storage material

(Low pressure)





Pressure range : 0.1Pa-50KPa

Pressure range : 20KPa-10MPa

#### Testing system of tritium-reservoir performance

Tritium reservoir



#### tritium-reservoir performance Control





#### 5. Tritium Sampling

Tritium transport in environment



Sampling tritium (HTO, HT, CH3T, OBT): Necessary

TNISR 钍基熔盐核能系统

SINAP

Successful development of OBT-oxidation collection and tritium sampler







On line monitoring of HTO, HT and Kr, Xe, simultaneously ; HT,HTO:  $1-10^7 \mu \text{Ci/m}^3$ Kr and Xe:  $1-10^6 \mu \text{Ci/m}^3$ 



## **Other studies**

#### **Tritium barrier**

### Selection of tritium barrier

| Barrier                        | Base Metal                               | PRF*             |
|--------------------------------|------------------------------------------|------------------|
| Al <sub>2</sub> O <sub>3</sub> | SS316, MANET,<br>TZM, Ni,<br>Hastalloy-X | 10 to<br>>10,000 |
| TiC, TiN,                      | SS316, MANET,                            | 3 to             |
| TiO <sub>2</sub>               | TZM, Ti                                  | >10,000          |
| $Cr_2O_3$                      | SS316                                    | 10 to 100        |
| Si                             | Steels                                   | 10               |
| BN                             | 304SS                                    | 100              |
| N                              | Fe                                       | 10 to 20         |
| Er <sub>2</sub> O <sub>3</sub> | Steels                                   | 40 to 700        |
| · · ·                          |                                          |                  |

\*permeation reduction factor



#### **Experimental results of tritium barrier**



Fabrication for tritium barrier by pack cementation



Measurement of FRF of tritium barrier







## Outline

- I. Background
- **II. Roadmap** of Tritium-control technologies for TMSR in CAS
- **III. Performances** at the tritium-control

technologies for TMSR in CAS



- 1. Several test platforms for tritium control have been set up in CAS
- 2. Sampling and monitoring technologies have been mastered in CAS
- 3. Several experiments are conducting in CAS, those consist of interaction of hydrogen isotope with graphite, gas extraction in high-temperature molten salt loop
- 4. The chemical form of tritium in both irradiation high-temperature molten salt and graphite will be determined along with the cooperation between SINAP and MIT

