Tritium Control Using Carbon Outside of Core

Stephen T Lam

Charles Forsberg Ron Ballinger

Massachusetts Institute of Technology

Tritium Overview

Generation

• Thermal neutron transmutation of Li-6

$$^{6}\text{LiF} + n \rightarrow {}^{4}_{2}\text{He} + {}^{3}_{1}\text{HF}$$

 Initially 0.005 wt. % Li-6 in Flibe consumed but is continually produced by Be-9 transmutation:

$${}_{4}^{9}\text{BeF}_{2} + n \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{6}\text{He} + 2F$$

$${}_{2}^{6}\text{He} \rightarrow {}_{3}^{6}\text{Li} + e^{+} + \overline{v}_{e} \quad \left(t_{\frac{1}{2}} = 0.8 \text{sec}\right)$$

Concerns

• Corrosion: TF oxidizes chromium in stainless steel

$$2TF_{(d)} + Cr_{(s)} \rightarrow CrF_{2(d)} + T_{2(g)}$$

- **Release:** T₂ diffuses through piping and escapes to environment
- **Uncertainty:** Lack of industrial experience with FHR

Regulatory Tritium Limits

Limit: Concentration limits in Effluent

Target: ALARA. Similar magnitude to existing commercial reactors

		Annual Radiation Dose		Effluent Concentration			
				Air		Water	
	Regulation	(mrem)	(mSv)	(µCi/ml)	(Bq/ml)	(µCi/ml)	(Bq/ml)
Limit	10 CFR 20.1301(a)1	100	1	-	-	-	-
	Table 2 of Appendix B to 10 CFR 20	50	0.5	1E-7	3.7E-3	1E-3	37
Standard	10 CFR 20.1301(e)	25	0.25	$(5E-8)^{a}$	$(1.85E-3)^{a}$	$(5E-4)^{a}$	$(18.5)^{a}$
ALARA	Appendix I to	20 (β,air)	0.20	$(4E-8)^{a}$	$(1.48E-3)^{a}$	-	-
	10 CFR 50	3 (water)	0.03	-	-	1.5E-5	0.56
Drinking Water	EPA standard	4	0.04	-	-	2E-5	0.74

a. Calculated by assuming the linear relationship between the annual dose of 50 mrem and the values in Table 2 of Appendix B of 10 CFR 20.

ALARA = as low as reasonably achievable

CFR = Code of Federal Regulations

"Sherman, S.R. Adams, T.M., "Tritium Barrier Materials and Separation Systems for the NGNP," WRSC-STI-2008000358, Rev.1, Savannah River National Laboratory, (2008)."

Tritium Modeling in FHR

Figure 1:TRIDENT Model Overview

*"J. Stempien, "A Model of Tritium Transport and Corrosion in Salt-Cooled Reactors," Cambridge, 2015."

TRIDENT

 $\frac{Tr}{itium \underline{D}} iffusion \underline{E} volutio \underline{N} and \\ \underline{T} ransport$

Time dependent tritium in FHR model developed at MIT*:

- Tritium generation in core
- TF and T₂ Speciation (Redox)
- In-core graphite Up-take
- Corrosion consumption & generation
- Diffusion in coolant, vessels, heat exchangers, reflectors
- Mitigation mechanisms
- Tritium release to environment

Tritium Production Rates

Estimated Base Case FHR Without Mitigation

	Tritium Production Rates [Ci/GWd]
BWR*	12.3
PWR*	13.9
HTGR*	18.5
FBR*	24.9
HWR*	1176
FHR	Beginning of Life: 11,000 Equilibrium: 2,900

"J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

*Other reactor values calculated from data in:

"Management of waste containing tritium and carbon-14", International Atomic Energy Agency, Technical Reports Series No. 421, Vienna, 2004.

Mechanisms and Release Rates

Tritium Capture Evaluation

- Without mitigation, release to environment peak at **2410 Ci/EFPD**
- Three mitigation mechanisms were evaluated in TRIDENT

1. Stripping Column

- 10 stage counter current column with 20,000 L/hr STP stripping gas
- Release rate with column: 436 Ci/EFPD

2. Permeation Window

- Shell with permeation tubes (Nickel) with 2x heat exchanger area
- Release rate with window: 800 Ci/EFPD

3. Carbon Absorber Bed

- 1.2(R)x3.85(H)m bed nuclear grade graphite ISO-88 with 1 regen/30 days
- Release rate with bed: 7.5 Ci/EFPD ← Similar to a PWR

Simplified Tritium Removal Analysis

Massachusetts Institute of Technology

Numbers from "J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

Carbon Absorber Bed

Concept

- Counter-current pebble bed
 absorber for coolant from core
- Continuous on-line regeneration
- Example: High temperature tritium de-gassing

Specifications

- Bed size and flow rate (% of total primary molten salt flow)
- Operating temperatures
- Absorbent partial pressures
- Carbon type and area

[&]quot;J. Stempien, "A Model of Tritium Transport and Corrosion in Salt-Cooled Reactors," Cambridge, 2015."

Graphite Bed Location

Location

- Primary system before heat exchanger
- Full or partial flow

Current Modelling

- 1-D tritium diffusion through molten salt
- Graphite capacity limited
- Graphite ISO-88 (Nuclear grade)

Schematic of a PB-FHR Continuously regenerated carbon bed

"J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

Choice of Absorbent

Considerations

- Non-nuclear grade (outside of core)
- Performance under operating conditions
- Long-term behavior in FHR

Carbon Properties

- Absorption rate
- Desorption rate
- Hydrogen Capacity:
 - BET Surface Area
 - ~1 vs. 3000 m²/g (nuclear graphite vs. activated carbon)

L. Wang, N. R. Stuckert and R. T. Yang, "Unique Hydrogen Adsorption Properties of Graphene,"

H₂ Uptake Completion Time

Massachusetts Institute of Technology

Figure 7. Adsorption fraction at 298 K on graphene (A) and AX-21 carbon (B) during each pressure ramp step at final pressures of: ~ 2 MPa (\Box), 6.2 MPa (Δ), and 7.9 MPa (○).

20

AX-21

25

30

10

2015 | 10

H₂ Capacity vs. Temperature

Specific capacity of Papyex graphite under deuterium gas only at 0.66 Pa. Engineering implications: Column size, percent flow, regeneration

Data converted "J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015." Original Data: CAUSEY, R.A., WILSON, K.L., "Retention of deuterium and tritium in Papyex graphite," *Journal of Nuclear Materials*. **138**, 57–64 (1986).

FHR Conditions

Temperatures*					
Coolant Freezing	459°C (FliBe)				
Operating Core Outlet	700°C				
ATWS	<800°C				
Coolant Boiling	1400°C (FliBe)				
Pressures (primary loop) *TRIDENT Simulation					
p _{T2} Unmitigated	3.3-20 Pa				
p _{T2} with Graphite Capture	0.03-0.08 Pa (Peak release 7.5 Ci/GW/d)				
p _{TF} Unmitigated	0.03-0.075 Pa				
p _{TF} with Graphite Capture	0.0027-0.0045 Pa (Peak release 7.5 Ci/GW/d)				

Challenge: Low pressure and high temperature data

* "C. Andreadas, et. Al. "Technical Description of the "Mark 1" Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," University of California, Berkeley, Berkeley, 2014."

Massachusetts Institute of Technology

Next Steps

- 1. Design and construct experiment for testing performance of different carbons in FHR conditions
 - Vacuum chamber
 - Temperature and pressure controls, etc.
- 2. Data collection to understand hydrogen uptake mechanics
 - Absorption-Desorption kinetics (trapping, diffusion, etc.)
 - Behavior in high temperature exposure, cycling

3. Modeling and technology qualification

- Use new data to reduce model uncertainty
- Improve predictive capability

Questions

In-Core Graphite

(Left) Mk1 pebble core geometry showing fuel pebble (green) and graphite reflector pebble (yellow) regions

(Above) A PB-FHR pebble fuel element

Massachusetts Institute of Technology

ANDREADES, C., CISNEROS, A.T., CHOI, J.K., CHONG, Y.K., FRATONI, M., HONG, S., ET AL., "Technical Description of the 'Mark 1' Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," UCBTH-14-002, University of California-Berkeley, (2014).

2015 | 15

In-Core Graphite

Replaceable Mk1 center graphite reflector

ANDREADES, C., CISNEROS, A.T., CHOI, J.K., CHONG, Y.K., FRATONI, M., HONG, S., ET AL., "Technical Description of the 'Mark 1' Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactor (PB-FHR) Power Plant," UCBTH-14-002, University of California-Berkeley, (2014).

Gas Stripping Column

Schematic of a PB-FHR with multi-stage counter current gas stripper and charcoal bed

Numbers from "J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

Permeation Window

- 1-D diffusion through Ni Tubes
- 20,000 m² surface area
- 27,360 permeation tubes
- Permeation tubes OD: 0.00635

Schematic of a PB-FHR Permeation Window and Activated Charcoal bed for gas recovery

"J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

Hydrogen Solubility

Hydrogen solubility of different carbons at 1000 °C and 101 kPa

"Astumi, H., Iseki, M., Shikama, T., "Trapping and detrapping of hydrogen in carbon-based materials exposed to hydrogben gas," Journal of Nuclera Materials. 212-215, 1478-1482 (1994) "

Hydrogen Absorption Rates

Hydrogen absorption rates in graphite and the CFC CX-2002U. T = 1273 K and P = 10 kPa.

ATSUMI, H., ISEKI, M., "Hydrogen absorption process into graphite and carbon materials," *Journal of Nuclear Materials*. **283–287, Part 2**, 1053–1056 (2000).

Absorption Rate vs. Temperature

• Increasing absorption rate with increasing temperature

Hydrogen absorption rate in (a.) IG-110U, (b.) IG-430U, and (c.) ISO-880U.

Solubility vs. Temperature

Solubility isotherms for deuterium adsorption on ISO-88 graphite

Tritium Retention vs. Irradiation

Hydrogen retention in ISO-880U and IG-430U. Irradiation was to 0.047 dpa.

Data converted "J. Stempien, "Tritium Transport, Corrosion, and Fuel Performance Modeling in the Fluoride Salt-Cooled High-Temperature Reactor," MIT, Cambridge, 2015."

Original: ATSUMI, H., TANABE, T., SHIKAMA, T., "Bulk hydrogen retention in neutron-irradiated graphite at elevated temperatures," *Journal of Nuclear Materials*. **390–391**, 581–584 (2009).

2015 | 23

Massachusetts Institute of Technology

Tritium Trapping vs. Irradiation

Tritium Trap Concentration (atom ppm) for H-451 and N3M

CAUSEY, R.A., WILSON, K.L., WAMPLER, W.R., DOYLE, B.L., "The Effects of Neutron Irradiation on the Trapping of Tritium in Graphite," *Fusion Science and Technology.* **19**, 1585–1588 (1991).

Hydrogen Diffusion vs. Irradiation

Neutron Fluence (x 10²⁴ n/m²)

Hydrogen Diffusion with Neutron Flux at 1273K and 10 kPa

ATSUMI, H., TANABE, T., SHIKAMA, T., "Hydrogen behavior in carbon and graphite before and after neutron irradiation – Trapping, diffusion and the simulation of bulk retention–," *Journal of Nuclear Materials*. **417**, 633–636 (2011).