FLiBe Electrochemistry and Materials Corrosion Research at UW-Madison

<u>Thomas Chrobak</u>, Karl Britsch, Dr. Guoping Cao, Dr. Kumar Sridharan, Dr. Mark Anderson Tritium Workshop, Salt Lake City, UT 10/27/2015

College of Engineering

University of Wisconsin-Madison

Outline

- Introduction to LiF-BeF₂ (FLiBe)
 - Fluoride Salt Chemistry
 - Molten Salt Corrosion
- Electrochemistry Studies on Fluoride Salts
 - FLiBe Redox Measurements
- Static Corrosion Test
 - Experimental design and materials
- FLiBe Natural Circulation Flow Loop
 - Flow-assisted corrosion testing in FLiBe convection loop

Research Questions to be answered

- Will a 0.3V difference in the **redox potential** of FLiBe salt cause a significant **increase in corrosion behavior**?
 - (-1.71V) As-purified vs. (-1.41V) Be-reduced
- Does the presence of **graphite** in the salt facilitate **corrosion**?
 - Liner vs. without liner
- What is the effect of **flow** on **corrosion**?
- Is there a significant difference in **corrosion behavior** of samples in the **cold or hot leg** of a natural circulation flow loop?
- What is the **compatibility** of new selected **materials**?

More Research Questions for Consideration

Stoichiometric

- What is the **optimum amount of Be** that should be added to FLiBe?
 - Balance between over and under-reduction \rightarrow smallest quantity possible sequentially added

VS.

- Does the **over-abundance of Be metal** in the salt cause enhanced **corrosion** to **carbon-containing parts**?
 - Possible formation of a BeC passivation layer that can keep salt redox low while protecting C from further corrosion?
 - Increased wetting of glassy carbon crucible following Be reduction
 - Convex surface before reduction vs. concave surface after reduction.

9

Excess

Why Use FLiBe as Liquid Salt Coolant?

- Higher outlet temperatures lead to:
 - More valuable process heat applications
 - Greater cycle efficiencies $\rightarrow \eta_{Carnot} = 1 \frac{T_C}{T_H}$

	Operating Temperature [°C]	Operating Pressure [MPa]	Thermal Conductivity [W/m-K]	Volumetric Heat Capacity [kJ/m ³ -K]	Viscosity [Pa-s]
Water	300	15	0.55	3970	8.8×10 ⁻⁵
Helium	850	7.5	0.29	20.9	4.2×10 ⁻⁵
Sodium	550	Atmospheric	62	1008	2.3×10 ⁻⁴
Lead	550	Atmospheric	18.25	1499	1.67×10 ⁻³
FLiBe	650	Atmospheric	1.0	4683	5.6×10 ⁻³

- No ideal heat transfer fluid exists
- Molten fluoride salts offers a good compromise of properties

Properties of FLiBe meet most requirements for FHR Salt

- Molten Salt Primary Coolant Requirements

 MSR
 Exhibit chemical stability at T > 800 °C
 Stable in an intense radiation field
 Consist of low thermal cross section elements
 Melt at useful temperature (<500 °C) without being volatile
 Compatible with high-temperature alloys and graphite
- LiF-BeF₂ FLiBe as primary coolant
 - + Atmospheric pressure operation
 - + Good heat transfer properties
 - + Neutron transparent
 - + Wealth of MSRE experience
 - Tritium production from ⁶Li
 - Beryllium toxicity
 - Corrosive without chemistry control or proper materials

MSRE Salt. Blue tint from dissolved UF₄

Overall Corrosion Process

- Impurity-driven corrosion dominates initial phase
- Thermodynamically-driven leads to continuous corrosion

Possible Corrosion Solutions

- Minimize thermal gradients?
- Use high Ni, low Cr Alloys?
- Implement chemistry control of salt with redox potential measurement to maintain high salt quality

DEP

College of Engineering

TMENT

University of Wisconsin-Madison

Engineering Phus

Thermodynamically Driven Corrosion

М

Engineering Physics

College of Engineering

Ν

University of Wisconsin-Madison

Impurity Driven Corrosion

- Thermodynamically favorable reactions due to unstable impurities
- Occurs quickly in initial corrosion stages

Metal Fluoride Impurity Reactions

 $M_{alloy}(s) + M_{imp}F_x(d) \rightarrow M_{alloy}F_y(d) + M_{imp}(s)$

Moisture Impurity Reactions

~

$$\frac{x}{2}H_2O + M_{salt}F_x \rightarrow M_{salt}O_x + xHF$$
$$xH_2O + M_{salt}F_x \rightarrow M_{salt}(OH)_x + xHF$$
$$M_{alloy}(s) + xHF \rightarrow M_{alloy}F_x(d) + H_2$$

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

Fluoride Salt Corrosion Mechanisms

Engineer College of Engineering

- Salt constituents are more stable than metal fluorides
- Almost no corrosion expected from pure FLiBe
- How can we ensure purity of FLiBe? \rightarrow Redox potential

Experimental facilities for electrochemical testing of FLiBe

- HP 3616A Power Supply
- Ar glovebox. O_2 and Moisture <1 ppm
- Radiant heater, PID used to maintain 500±0.5°C

Dynamic reference probe design forD E P A R T M E N T O F
Engineering Physics
University of Wisconsin-Madisoncompact redox potential testing of FLiBeUniversity of Wisconsin-Madison

Dynamic Reference Electrode Measurements Engineering P College of Engineering University

• Combination of Dynamic and Static Techniques

First Phase

• Beryllium is plated from the salt onto an electrode (1)

Second Phase

- Voltage is cut, beryllium allowed to redissolve back into the salt
- Be|BeF₂ reference voltage is formed from dissolution reaction (2)
- As plated products deplete, voltage relaxes back to zero (3)

М

(Afonichkin, 2009)

Redox Probe Measurement Process Engineering Physics

M E N T O F Е Т College of Engineering University of Wisconsin-Madison

D

Р

Plateau voltage of Be dissolution indicates redox potential of FLiBe

Procedure:

- Start after plating time + 1 second
- (current point moving average) $< V_c$?
 - If true, move on to next point, update average

Blue: Original data Red: Plateau data points Green: Average of red points -Used as Redox Voltage

• Points collected and averaged until end point exceeds a set cutoff voltage, V_c.

Redox potential testing of purified, unreduced UW-made FLiBe

- 24 Measurements total, average of -1.708V with standard deviation of 6.2 mV
- Average standard deviation within each batch of 3.11 mV
- All batches will be mixed together prior to crucible loading

Engineering Phys

College of Engineering

Production, purification and reduction of UW-made FLiBe

Video of FLiBe being poured from vessel into tray in glovebox

Glovebox inventory of FLiBe for all future experiments

Four nickel crucibles are fully filled and stored in jars.

Approximately 250 g of granulated salt was separated for one crucible in corrosion test.

Total of 2.2 kg of UW-made FLiBe currently stored in glass jars in Ar glovebox.

Next static corrosion experiment will test multiple variables

- Metrics to test against corrosion:
 - Redox potential effect
 - HF/H_2 Purified salt (redox potential = -1.71V)
 - Beryllium Reduced salt (redox potential = -1.41V)

- Effect of carbon from IG-110 graphite crucible

- Corrosion test with or without liner for 316 SS
- New materials testing in FLiBe
 - GA SiC-SiC
 - Mo-Hf-C alloy
 - Zr/C-W Cermet

Experimental Design of Static Corrosion Experiment in FLiBe

*Avoid dissimilar materials in contact in FLiBe wherever possible

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

- Flow-assisted corrosion in natural circulation FLiBe loop
 - Corrosion samples in hot and cold legs of loop
 - Thermo-physical properties of FLiBe can be measured
 - Surge tank on top of loop for in-situ salt measurements and chemical control

FLiBe Natural Convection Loop 1/2

- FLiBe natural convection loop to be built
 - Incorporate Be-addition, redox measurement, and corrosion tests.
 - Use ports in surge tank for:
 - 1. Sacrificial Be rod with bellow
 - 2. 3-electrode redox probe
 - 3. Port-hole
 - 4. Anything else?

FLiBe Natural Convection Loop 2/2 Engineering Physics College of Engineering

- 1" OD Stainless Steel tubing
 - Composition matching important
- Two double ball valves to support in-loop corrosion tests.

M E N

Thank you for your attention!

Questions?

College of Engineering

University of Wisconsin-Madison