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e Introduction to LiF-BeF, (FLiBe)

— Fluoride Salt Chemistry
— Molten Salt Corrosion

 Electrochemistry Studies on Fluoride Salts
— FLiBe Redox Measurements

o Static Corrosion Test
— Experimental design and materials

o FLiBe Natural Circulation Flow Loop
— Flow-assisted corrosion testing in FLiBe convection loop
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University of Wisconsin-M;

Will a 0.3V difference in the redox potential of FLiBe salt cause a
significant increase in corrosion behavior?
— (-1.71V) As-purified vs. (-1.41V) Be-reduced

Does the presence of graphite in the salt facilitate corrosion?
— Liner vs. without liner

What is the effect of flow on corrosion?

Is there a significant difference in corrosion behavior of samples in the
cold or hot leg of a natural circulation flow loop?

What is the compatibility of new selected materials?




More Research Questions for o rroA R T AT o
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Consideration

e What is the optimum amount of Be that should be added to FLiBe?
— Balance between over and under-reduction - smallest quantity possible sequentially added

Stoichiometric VS. Excess ?

 Does the over-abundance of Be metal in the salt cause enhanced corrosion to
carbon-containing parts?

— Possible formation of a BeC passivation layer that can keep salt redox low while protecting C from
further corrosion?

— Increased wetting of glassy carbon crucible following Be reduction
Convex surface before reduction vs. concave surface after reduction.
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e Higher outlet temperatures lead to:

* More valuable process heat applications
.. T

o Greater cycle efficiencies— Ncgrnot = 1 — T—"

H
Operating Operating Thermal Conductivity Volumetric Heat Viscosity

Temperature [°C] | Pressure [MPa] [W/m-K] Capacity [kJ/m3-K] [Pa-s]

300 15 0.55 3970 8.8x10%
850 75 0.29 20.9 4.2x10°
550 Atmospheric 62 1008 2.3x104
550 Atmospheric 18.25 1499 1.67x102
650 Atmospheric 1.0 4683 5.6x10-3

* No ideal heat transfer fluid exists
» Molten fluoride salts offers a good compromise of properties
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Properties of FLiBe meet most Engincering Physic:

requirements for FHR Salt

Molten Salt Primary Coolant Requirements
‘[ Exhibit chemical stability at T > 800 °C MSRE Salt.’ Blue tint from dissolved UF,
‘-é./ Stable in an intense radiation field
\( Consist of low thermal cross section elements \
\( Melt at useful temperature (<500 °C) without being volatile
? Compatible with high-temperature alloys and graphite

o LiF-BeF, - FLiBe as primary coolant
+ Atmospheric pressure operation

o ten e poperics. [ N A I

Neutron transparent

LLCTdaEIReleRs 0. 009 0.010 0.033 0.05 0.18 0.37 0.53
Wealth of MSRE experience Section
= Tritium production from 6Li

= Beryllium toxicity
= Corrosive without chemistry control or proper materials

+ + +
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e Impurity-driven corrosion dominates
Initial phase

* Thermodynamically-driven leads to
continuous corrosion

CrF:
Formation/
Dissolution
(impurity
driven)

Mass Transfer
{driven by thermal sradient: and
flow)

Possible Corrosion Solutions

Dvepth of Corrosion

e Minimize thermal gradients?

e Use high Ni, low Cr Alloys?

Exposure Time

» Implement chemistry control of salt
with redox potential measurement to
maintain high salt quality
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Thermodynamically Driven Corrosion Engineering Physics
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Formation/

« Non-favorable reactions slowly occurring
» Assisted by a temperature gradient and mass flow

Mass Transfer
(driven by thermal gradients and

Depth of Corrosion

BeF, + Cr < Be + CrF,

Expuosure Time

__[Be][CrF,]
9 " [BeF,][Cr]

K.

Keq = 8.66 x 1012 Keq = 2.76 X 1014

|J HASTELLOT N-2'% No WELD ROD
~—HASTELLOY M—2% Wb TUBNG

at 700 °C at 600 °C
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Impurity Driven Corrosion Engineering Physics
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» Thermodynamically favorable reactions due to unstable impurities

» Occurs quickly in initial corrosion stages Alloy Salt
Metal Fluoride Impurity Reactions N { HF
é I -
Malloy(s) + Mimpr(d) - MalloyFy(d) + Mimp(s) NIF2 + H2
Moisture Impurity Reactions FeF, + Ni
X
EHZO + Mg, 11 Fy > Mgq1;Ox + xHF
2 | |
xH,0 + M,y F,, = Mgy, (OH)+ xHF L - Y Cri, + Fe
Malloy(s) + xHF - Mallony(d) + H, Further Be
Reduction BeF, + Cr

Required
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Free Energies of Salt Fluorides and Corrosion Products

40 . . . . . - Corrosion Products
0.17 MoF6
-50 e less stable
0.5 NiF2 ( )
— -60 e AN
5 0.5 FeF2 _
E -70 S L k7
g 907 0.5 CrE6
= 90
O .
< % 0.5 BeF?2
< -110
= 120
) LiF v
-130 e .
140 Salt Constituents
500 550 600 650 700 750 800 (more Stable)

Temperature [C]

« Salt constituents are more stable than metal fluorides
e Almost no corrosion expected from pure FLiBe
 How can we ensure purity of FLIBe? = Redox potential

W

10



Experimental facilities for PrraRIE LN o
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electrochemical testing of FLiBe

1 ' Omega
CRFC-36/115-A
_ N Radiant Heater

21/2" 0D
Stainless Steel Crucible

AN

5.9060 I

Alumina Crucible

/ Bottom - Made in house
/ 6 1/2" x 6 1/2" Zircar base

W

—

o HP 3616A Power Supply
» Ar glovebox. O, and Moisture <1 ppm
» Radiant heater, PID used to maintain 500+0.5°C | 51180

.
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compact redox potential testing of FLiBg™  “~
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O-Ring
BN Spacer
Glassy Carbon Anode
Mo Cathode
Mo Indicator
Mo TC well

K-Type TC
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e Combination of Dynamic and Static
Techniques

First Phase

* Beryllium is plated from the salt onto an
electrode (1)

EV

Second Phase T E PRI

« Voltage is cut, beryllium allowed to redissolve (Afonichkin, 2009)
back into the salt

« Be|BeF, reference voltage is formed from
dissolution reaction (2)

» As plated products deplete, voltage relaxes back
to zero (3)
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Plateau voltage of Be dissolution T L
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Indicates redox potential of FLiBe ==~ =

-1.8 -1.72

~ 17 ~

T % -1.715

@ 36 @

)
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0 50 100 150 200 250 300 0 5 10 15 20
Time [s] Time [s]
Procedure: o Blue: Original data
» Start after plating time + 1 second Red: Plateau data points
* (current point — moving average) < V? Green: Average of red points
» If true, move on to next point, update average -Used as Redox Voltage

W

« Points collected and averaged until end point exceeds a set cutoff voltage, V..
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Redox potential testing of purified, =:r»n:uons
%

-1.65
0

-1.67

Voltage vs. Be|BeF2
2o
0
.

[
~N
[E
oo
4
L 24 4

-1.75

Batch Number

o 24 Measurements total, average of -1.708V with standard
deviation of 6.2 mVV

* Average standard deviation within each batch of 3.11 mV
« All batches will be mixed together prior to crucible loading

W
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Production, purification and srrAn T rgT o
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reduction of UW-made FLiBe

HF Cylinder
Purification ‘ £
Vessel . ‘
Off-Gas @ )i
Monitoring
Recerving
Vessel
Beryllium
and
Raw HF /Hs — Hs — Filtration Filtration [ Beryllium

U'W Flibe

Materials 600 — 630°C 650°C L Reduced

As-received BeF, As-received LiF




Video of FLiBe being poured from
vessel into tray in glovebox
4
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Glovebox inventory of FLiBe for all o :rssrmcny oo
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future experiment A

-

Ty, g — — —-

Four nickel
crucibles are
fully filled and
stored in jars.

Approximately
250 g of
granulated salt
was separated for
one crucible in
corrosion test.

=

Total of 2.2 kg of UW-made FLiBe currently stored in glass jars in Ar glovebox. w
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Next static corrosion experiment — o r.» sy e
will test multiple variables =

e Metrics to test against corrosion:

— Redox potential effect
« HF/H, Purified salt (redox potential = -1.71V)
 Beryllium Reduced salt (redox potential = -1.41V)

— Effect of carbon from 1G-110 graphite crucible
o Corrosion test with or without liner for 316 SS

— New materials testing in FLiBe
 GA SIC-SIC
e Mo-Hf-C alloy
e Zr/C-W Cermet

20



Experimental Design of Static AT o
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Corrosion Experiment in FLiBe = wd

Crucible 1: -1.7V Crucible 2: -1.4V UW W-Zr-C Cermst —_ < 318 SS without liner

|— 316 SS with liner

Hole 1: SiC - 3x SiC-SiC samples, 1x bulk SiC
sample

Hole 2: Nuclear Graphite - 3x matrix graphite
samples, 1x 1G-110 sample

X
. 10 mm '
Hole 3: No liner. Mo-Hf-C - 3x Mo-Hf-C T - B 5 mm

alloy samples with Mo wire suspension* |

Hole 4: No liner. W-Zr-C = 3x W-Zr-C Cermet
samples with W wire suspension®

Hole 5: No liner. 316 SS - 3x 316 samples with
SS wire suspension* Nuclear graphite —

_ _ CVD SiC and SiC-SiC ——x
Hole 6: With 316 SS liner. 316 SS > 3x 316

samples with SS wire suspension*
&31.5000

*Avoid dissimilar materials in contact in FLiBe wherever possible

21
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Immediate Future Work Engineering Physics
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* Flowe-assisted corrosion in natural circulation FLiBe
loop
— Corrosion samples in hot and cold legs of loop
— Thermo-physical properties of FLiBe can be measured

— Surge tank on top of loop for in-situ salt measurements and
chemical control

22
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FLiBe Natural Convection Loop 1/2  Zrgieertng Thvsies

« FLiBe natural Berod  Probe
convection loop to be e @(1- |
built .

— Incorporate Be-addition,
redox measurement, and
Corrosion tests.

— Use ports In surge tank o e
fo r. Corrosion
1. Sacrificial Be rod with specimens |
bellow
2. 3-electrode redox probe
3. Port-hole

4. Anything else?

23
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FLiBe Natural Convection LLoop 2/2 Engineering Physics
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e 1” OD Stainless
Steel tubing

— Composition
matching

important § g
e Two double ball
valves to support
in-loop

corrosion tests.
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Thank you for your attention!

Questions?
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