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Outline
• Tritium in fission and fusion reactors: similarities and differences
• Overview of breeding concepts for fusion
• Tritium management in fusion
• Concepts for tritium extraction from liquids
• Permeation barriers
• Permeation scaling with pressure
• Conclusions and recommendations for future research



Tritium generation in fission and fusion reactors
• Tritium generation in salt-cooled fission reactors is large relative to 

other fission reactors, but several orders of magnitude less than fusion

• Fusion consumes ~55 kg of tritium per GW-year of fusion power, and 
must necessarily breed this amount from lithium

• Tritium is very mobile and will permeate through solids at high 
temperature; losses must be limited to < 20 Ci/day (very roughly 1 g/yr)

• A fusion reactor must recover and separate bred tritium for re-use as 
fuel; in a fission reactor is it a waste product

• Strategies for tritium permeation control and extraction investigated for 
fusion should apply to salt-cooled fission reactors

PWR1 CANDU1 Gas-cooled
reactor1

Molten salt 
reactor1

ITER FNSF DEMO

T generated (kg/y) 0.000075 0.1 0.002 0.09 0.0042 1 - 10 100 - 167

1H. Schmutz, INL/EXT-12-26758, 2012



Tritium breeding materials in fusion
• Tritium is bred via neutron interactions with materials enriched in 

lithium-6
• Solid breeders (beds with ~1 mm diameter pebbles)

– Li4SiO4 or Li2TiO3 ceramic breeder
– Be or Be12Ti (lower chemical reactivity) neutron multiplier

• Liquid breeders
– Li liquid metal
– PbLi eutectic (Pb is a multiplier; less chemically reactive than Li)
– FLiBe (requires additional Be multiplier)

• Current research is focused on solid ceramic (European, Japanese, 
Korean, Chinese, and Indian TBMs in ITER) or PbLi breeders (EU, 
Indian TBMs)

• The US does not have a TBM program, but our reference design is 
based on a PbLi breeder



PbLi breeder concepts
• Structural material: reduced activation ferritic-martensitic (RAFM) steel

– Limited to 550 °C operation, maybe lower (~480 °C) due to PbLi
corrosion

• Helium-cooled lead-lithium (HCLL)
– EU ITER TBM design and DEMO concept
– PbLi breeder flows very slowly and serves no cooling function

• High tritium partial pressure; permeation barriers required
– Cooling is provided entirely by separate helium channels

• Dual-coolant lead-lithium (DCLL)
– US TBM conceptual design (not pursued) and DEMO concept
– Higher PbLi flow rates

• Low tritium partial pressures if extraction system is highly efficient
– ~50% of power extracted from PbLi, ~50% from separate helium 

coolant
– SiC flow channel inserts for thermal (potential PbLi temp ~700 °C), 

and electrical (mitigate MHD forces) insulation, and corrosion barrier
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Tritium solubility in PbLi, FLiBe, and metals
PbLi: E. MAS DE LES VALLS et al., Journal of 
Nuclear Materials, 376, 353 (2008).

Molten Salt: A. NAKAMURA al., Journal of Plasma 
Fusion Research SERIES, 11, 25 (2015).



Tritium control in fusion
• Both PbLi and FLiBe have low tritium solubilities- this results in a 

higher tritium partial pressure and tends to drive permeation losses 
through solid structures

• Extraction concepts therefore attempt to do the following:
– Provide a medium (purge gas, getter, etc.) where tritium will 

preferentially accumulate, relative to structural materials
– Maximize the contact area of the breeder/coolant with this medium
– Minimize the transport distance through the breeder/coolant to 

reach this medium
– Maximize the residence time in the extraction system (i.e. reduce 

the flow rate)
• These same ideas for PbLi should be applicable to FLiBe or other 

molten salts (chemistry may complicate things somewhat)
• Additionally, one can apply permeation barriers (e.g. in the form of 

coatings) to structural materials- probably necessary for fusion, not for 
fission



Tritium extraction concepts
• Immersed getters
• Liquid getter/cold trap
• Release to purge gas or vacuum

– Bubblers, spray/droplets, extraction columns
• Vacuum permeator



Immersed Getters
• Getters such as U, Zr(Co), Pd, Ti, etc. are commonly used to remove 

tritium from gases (Example: a 60g U bed can hold 2g tritium)
• Immersed getters (V, Nb, Ta) have been proposed in the past to 

remove tritium from PbLi
• Principle demonstrated at small scale with V in PbLi, though not to 

saturation1

• Issues:
– Integrity of material (getter beds 

for gases are reduced to fines 
and require ceramic filters)

– Lifetime of beds under cyclic 
loading (e.g. daily) 

– Deleterious effects of impurities 
including oxygen

L. Sedano, Ciemat report, 2007.

1H. Feuerstein, Fusion Technology 
(14th SOFT), 1986, p. 646



Primary 
Salt

Intermediate/
Secondary

Alkaline metal film
(Na, NaK, or Li)

Concentric 
HX Tubes

Liquid metal getter with cold trap
• Concept investigated at KIT in the 1980s

– Intermediate NaK loop proposed, which acts 
as a tritium getter

– NaK cooled so as to precipitate solid hydrides
– Tritium removed from solid hydrides by 

vacuum pumping
• Might also take the form of a thin film between 

concentric HX tubes
– Processing rate required for fusion may imply 

large heat loss
– Salt-cooled fission reactors may require only 

infrequent batch processing and have minimal 
impact on HX performance

– Li suitable for fission reactors where 
subsequent extraction is unnecessary

• High saturated concentration
• Less chemically reactive than Na/NaK

J. Reimann, Fusion Technology 
(14th SOFT), 1986, p. 1579



Droplets in vacuum
• Concept: spray coolant as small droplets into a 

purge gas or vacuum
• Small droplets provide high surface area and 

small transport distance
• “Vacuum Disengager” proposed for HYLIFE-II 

IFE design study1

• Analytical solution and numerical models 
suggested 99.9% efficiency; no experiments 
performed

• Now under investigation for PbLi (as “Vacuum 
Sieve Tray”)2

• Different analytical solution and numerical 
models suggest 70% efficiency achievable

• Measured extraction was lower than predicted 
by 10x, but models depend on (uncertain) 
solubility and diffusivity

1T. Dolan, Fus. Tech. 21 (1992) 1949-1954

2F. Okino, FED 87 (2012) 1014-1018



Sulzer Column

20 cm

Structured
packing

Compact Mass Extractor
• Gas/Liquid Contactor – planned for HCLL (TBM and 

DEMO)
• Structured packing disperses PbLi flow and creates a 

large interfacial area between PbLi and gas
• ≤ 30% efficiency for single column as tested in 

MELODIE loop1

• HCLL DEMO (14 inventory re-circulations per day) 
requires at least 80% efficiency2 even with 
permeation barriers (with ~100x reduction factor)

• Larger scale tests, optimization planned at TRIEX 
loop (ENEA) but no results as of yet

2O. Gastaldi et al. FED 83 (2008) 1340–1347

1N. Alpy et al. FED 49-50 (2000) 775-780



Vacuum permeator
• For a PbLi-cooled (e.g. DCLL) or salt-cooled fission or fusion reactor, 

higher flow rates must be processed
– Simple scaling from most efficient MELODIE tests indicates that for 

a DCLL blanket (~470 inventory re-circulations/day), 240,000 
extraction columns would be required1 (!)

• DCLL flow rates are much higher (~470 inventory re-circulations/day 
required)

• Similar performance in a much smaller device is potentially achievable 
with a vacuum permeator

• Concept: a shell-and-tube mass exchanger with tritium-laden primary, 
vacuum secondary, and high-permeability, thin-walled tubes

• Required efficiency depends on the 
reactor design (losses), but:

– What is achievable?
– How does it scale?

1B. Merrill, 2005/06/15 ARIES meeting



Permeator extraction efficiency1

• Transport processes in a permeator tube:
– Advection in PbLi in the axial direction
– Convective mass transport in PbLi in the 

radial direction
– Permeation (Diffusion) through solid in the 

radial direction
• Can be solved analytically: 








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• ζ and τ are dimensionless numbers that indicate 
the relative importance of three transport 
phenomena

Radial Transport

Axial Transport

1P. Humrickhouse Fusion Science and 
Technology 68 (2015) 295-302



Significance of ζ and τ
• ζ indicates whether radial transport is limited by mass transport in PbLi, 

or by permeation through the solid tube wall
• When           : Diffusion in the solid is limiting; there is no dependence 

on the PbLi transport property 
• When           : Mass transport in the PbLi is limiting; there is no 

dependence on the solid transport properties          or PbLi solubility
• τ is a ratio of axial to radial transport times:

• When           , tritium is swept through the length of the permeator tube 
before it has a chance to migrate radially

• Need to evaluate     …  

1<<ζ

1>>ζ
TK

TK



Mass Transport Correlations
• is defined by the Sherwood number:
• Sherwood number correlations have the form
• For PbLi at 470-700 ˚C, 10 < Sc < 150     
• The correlations below are remarkably consistent with each other, and 

with the heat transfer analogy- this approach is valid
• The choice of correlation is not a significant source of uncertainty in this 

analysis relative to other parameters

β a b Range Reference Notes
0.023 4/5 1/3 Colburn 1933 Heat transfer analogy
0.023 0.83 0.44 2000 < Re < 35000

0.6 < Sc < 2.5
Gilliland and Sherwood 1934 Vaporization of nine different liquids in air

0.0328 0.77 0.33 3000 < Re < 40000
0.5 < Sc < 3

Johnstone and Pigford 1942 Distillation of five different substances in a 
wetted-wall column

0.023 0.83 1/3 2000 < Re < 70000
1000 < Sc < 2260

Linton and Sherwood 1950 Solution of benzoic acid, cinnamic acid, 
and beta-naphthol in water

0.0163 0.83 0.44 Sc ~ 0.6 Kafesjian et al. 1961 Vaporization of water in a wetted-wall 
tower

0.0096 0.913 0.346 10000 < Re < 100000
430 < Sc < 100000

Harriott and Hamilton 1965 Benzoic acid in glycerin-water, and 
hydroxymethycellulose solutions 

lT DdK=Sh

( )lDρµ=Sc

TK



Permeator Optimization
• Regardless of the transport regime, permeator efficiency is always 

increased by:
– Increasing the temperature, 
– Increasing the tube length, 
– Decreasing the permeator velocity,    (e.g. by increasing the 

number of permeator tubes)
– Decreasing the tube diameter,

• Using the analytical solution, we can optimize the design (minimize the 
total volume)

• The following slide does so for different materials and temperatures, 
subject to the following constraints (from ARIES-CS):  

m01.0d ≥ kg/s260002 == vrNm iπρ MPa1
2

2

≤=∆
v

d
Lfp ρ

L

d

v

7.0≥η



Tube material comparison

• There is a significant size/cost advantage to high-permeability 
materials

B&W PWR 
steam generator

RAFM 
470 ˚C

RAFM 
470 ˚C

RAFM 
470 ˚C

Vanadium
400 ˚C

Vanadium
500 ˚C

Vanadium
600 ˚C

Vanadium
700 ˚C

η (low solubility) 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Tubes (#) 15,000 343,521 68,704 19,432 13,347 10,136 8,274 7,095

Tube length (m) 20.7 8.54 16.61 37.3 18.25 11.15 7.65 5.7

v (m/s) 0.1 0.5 1.77 2.55 3.4 4.22 4.98

Total volume 
(m3) 61.8 278.7 108.42 69.0 23.15 10.74 6.01 3.84

ζ 4.85 1.27 0.45 1681 425 148 65

η (high solubility) 0.10 0.04 0.03 0.47 0.36 0.29 0.23



Group 5 Metals - oxidation
• Group 5 metals have very high tritium permeabilities

and from that standpoint are promising tube materials
• They are compatible with PbLi, but the oxygen partial 

pressure on the vacuum side must be kept below 10-10 

Pa to prevent oxidation1

• Application of a Pd coating can prevent this, and 
commercial hydrogen purifiers based on this concept 
are available

• They have a very narrow range of operation around 
400 ˚C

– At lower temperatures, hydrides form and embrittle
the structure

– At higher temperatures, Pd and substrate diffuse 
together, reducing (irreversibly) the tritium 
permeability

1R. Kurtz, 2005 ITER TBM meeting

V. Alimov, International 
Journal of Hydrogen Energy
36 (2011) 7737-7746



Potential solutions
• Inter-diffusion of Pd and substrate can be 

prevented by an intermediate layer that 
separates them

– Such composites are being actively 
investigated in the hydrogen energy 
research community

– These are typically ceramics with some 
porosity so as not to prevent tritium 
permeation

– Al2O3, Nb2C, HfN, YSZ, etc. mentioned in 
literature

• Alloys?
– V-Ni, Pd-Cu, V-Ti, V-Cu, others mentioned 

in literature
• Other coatings- Pd is necessary for separation 

from other gases, but we only need to prevent 
oxidation Edlund, Journal of Membrane 

Science 107 (1995) 147-153



Permeation Barriers
• Even under relatively optimistic assumptions for the extraction system, 

fusion systems studies usually find a permeation reduction factor 
(PRF) of 10-1000 on structures is necessary to meet release limits

• Many barriers have been investigated experimentally, such as low-
permeability metals (e.g. aluminum) or ceramics such as Al2O3, Cr2O3, 
Er2O3

• These have achieved permeation reduction factors as high as 10,000 
in the laboratory

Al2O3

Fe-Al

Levchuck et al 
JNM 328 (2004) 103 Al2O3 deposition by CVD - Jürgen Konys



Permeation Barriers in a Radiation Environment
• While permeation reduction factors up to 10,000 have been measured 

in the laboratory, reactor tests on the same materials have not 
achieved this

• This reduction may result from damage (e.g. cracking) of the barrier,   
an increase in defects, or some other effect under irradiation

Hollenberg et al FED 28 (1995) 190-208



Permeation scaling with pressure
• Permeation usually scales with the square root of partial pressure, 

implying that it is limited by diffusion through the solid
• Low pressures or surface changes can result in surface-limiting and a 

change to linear dependence on partial pressure
• Systems designed to achieve low tritium partial pressures need to 

investigate this experimentally
• Dimensionless number governs transition:

Serra and Perujo JNM 240 (1997) 215-220.

W ~ 1 W ~ 1

C1

JA

JR

P ~ 0

JD

P1 C2

Perkins and Noda JNM 71 (1978) 349-364.

Ali-Kahn et al JNM 76/77 (1978) 337-343.
DK

PxKW
S

A=



Conclusions
• A number of tritium capture/extraction concepts have been proposed 

for fusion over the last several decades
• Some of these have been investigated experimentally, but none on the 

scale (size, tritium inventory) or under the conditions (radiation, high 
temperatures, long times) necessary for fusion

• Because of the low solubility of tritium in both PbLi and molten salts 
(including FLiBe), extraction techniques developed for PbLi are likely 
applicable to salt-cooled fusion and fission reactors as well

• Tritium generation will be orders of magnitude lower in fission reactors, 
for which tritium is a much more manageable problem

– Tritium must be captured, but not necessarily separated/purified
– Extraction systems may only need to process a fraction of the 

coolant on each pass
– Permeation barriers may be unnecessary; for fusion it will be 

difficult to keep losses sufficiently low without them
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