Tritium permeation control and extraction- perspectives from fusion systems studies

Paul W. Humrickhouse

Workshop on Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors Salt Lake City, Utah October 28, 2015

www.inl.gov

Outline

- Tritium in fission and fusion reactors: similarities and differences
- Overview of breeding concepts for fusion
- Tritium management in fusion
- Concepts for tritium extraction from liquids
- Permeation barriers
- Permeation scaling with pressure
- Conclusions and recommendations for future research

Tritium generation in fission and fusion reactors

 Tritium generation in salt-cooled fission reactors is large relative to other fission reactors, but several orders of magnitude less than fusion

	PWR ¹	CANDU ¹	Gas-cooled reactor ¹	Molten salt reactor ¹	ITER	FNSF	DEMO
T generated (kg/y)	0.000075	0.1	0.002	0.09	0.0042	1 - 10	100 - 167

- Fusion consumes ~55 kg of tritium per GW-year of fusion power, and must necessarily breed this amount from lithium
- Tritium is very mobile and will permeate through solids at high temperature; losses must be limited to < 20 Ci/day (very roughly 1 g/yr)
- A fusion reactor must recover and separate bred tritium for re-use as fuel; in a fission reactor is it a waste product
- Strategies for tritium permeation control and extraction investigated for fusion should apply to salt-cooled fission reactors

Tritium breeding materials in fusion

- Tritium is bred via neutron interactions with materials enriched in lithium-6
- Solid breeders (beds with ~1 mm diameter pebbles)
 - Li₄SiO₄ or Li₂TiO₃ ceramic breeder
 - Be or Be₁₂Ti (lower chemical reactivity) neutron multiplier
- Liquid breeders
 - Li liquid metal
 - PbLi eutectic (Pb is a multiplier; less chemically reactive than Li)
 - FLiBe (requires additional Be multiplier)
- Current research is focused on solid ceramic (European, Japanese, Korean, Chinese, and Indian TBMs in ITER) or PbLi breeders (EU, Indian TBMs)
- The US does not have a TBM program, but our reference design is based on a PbLi breeder

PbLi breeder concepts

- Structural material: reduced activation ferritic-martensitic (RAFM) steel
 - Limited to 550 °C operation, maybe lower (~480 °C) due to PbLi corrosion
- Helium-cooled lead-lithium (HCLL)
 - EU ITER TBM design and DEMO concept
 - PbLi breeder flows very slowly and serves no cooling function
 - High tritium partial pressure; permeation barriers required
 - Cooling is provided entirely by separate helium channels
- Dual-coolant lead-lithium (DCLL)
 - US TBM conceptual design (not pursued) and DEMO concept
 - Higher PbLi flow rates
 - Low tritium partial pressures *if extraction system* is *highly efficient*
 - ~50% of power extracted from PbLi, ~50% from separate helium coolant
 - SiC flow channel inserts for thermal (potential PbLi temp ~700 °C), and electrical (mitigate MHD forces) insulation, and corrosion barrier

Tritium solubility in PbLi, FLiBe, and metals

PbLi: E. MAS DE LES VALLS et al., *Journal of Nuclear Materials*, **376**, 353 (2008).

Molten Salt: A. NAKAMURA al., *Journal of Plasma Fusion Research SERIES*, **11**, 25 (2015).

Tritium control in fusion

- Both PbLi and FLiBe have low tritium solubilities- this results in a higher tritium partial pressure and tends to drive permeation losses through solid structures
- Extraction concepts therefore attempt to do the following:
 - Provide a medium (purge gas, getter, etc.) where tritium will preferentially accumulate, relative to structural materials
 - Maximize the contact area of the breeder/coolant with this medium
 - Minimize the transport distance through the breeder/coolant to reach this medium
 - Maximize the residence time in the extraction system (i.e. reduce the flow rate)
- These same ideas for PbLi should be applicable to FLiBe or other molten salts (chemistry may complicate things somewhat)
- Additionally, one can apply permeation barriers (e.g. in the form of coatings) to structural materials- probably necessary for fusion, not for fission

Tritium extraction concepts

- Immersed getters
- Liquid getter/cold trap
- Release to purge gas or vacuum
 - Bubblers, spray/droplets, extraction columns
- Vacuum permeator

Idaho National Laboratory

Immersed Getters

- Getters such as U, Zr(Co), Pd, Ti, etc. are commonly used to remove tritium from gases (Example: a 60g U bed can hold 2g tritium)
- Immersed getters (V, Nb, Ta) have been proposed in the past to remove tritium from PbLi
- Principle demonstrated at small scale with V in PbLi, though not to saturation¹

- Issues:
 - Integrity of material (getter beds for gases are reduced to fines and require ceramic filters)
 - Lifetime of beds under cyclic loading (e.g. daily)
 - Deleterious effects of impurities including oxygen

¹H. Feuerstein, *Fusion Technology* (*14th* SOFT), 1986, p. 646

Liquid metal getter with cold trap

- Concept investigated at KIT in the 1980s
 - Intermediate NaK loop proposed, which acts as a tritium getter
 - NaK cooled so as to precipitate solid hydrides
 - Tritium removed from solid hydrides by vacuum pumping
- Might also take the form of a thin film between concentric HX tubes
 - Processing rate required for fusion may imply large heat loss
 - Salt-cooled fission reactors may require only infrequent batch processing and have minimal impact on HX performance
 - Li suitable for fission reactors where subsequent extraction is unnecessary
 - High saturated concentration
 - Less chemically reactive than Na/NaK

²F. Okino, FED 87 (2012) 1014-1018

Droplets in vacuum

- Concept: spray coolant as small droplets into a purge gas or vacuum
- Small droplets provide high surface area and small transport distance
- "Vacuum Disengager" proposed for HYLIFE-II IFE design study¹
- Analytical solution and numerical models suggested 99.9% efficiency; no experiments performed
- Now under investigation for PbLi (as "Vacuum Sieve Tray")²
- Different analytical solution and numerical models suggest 70% efficiency achievable
- Measured extraction was lower than predicted by 10x, but models depend on (uncertain) solubility and diffusivity

¹T. Dolan, *Fus. Tech.* **21** (1992) 1949-1954

Compact Mass Extractor

- Gas/Liquid Contactor planned for HCLL (TBM and DEMO)
- Structured packing disperses PbLi flow and creates a large interfacial area between PbLi and gas
- ≤ 30% efficiency for single column as tested in MELODIE loop¹

Extraction tests in a non-immersed hydraulic configuration $(T = 673 \text{ K})$				Extraction tests in an immersed hydraulic configuration ($T = 673$ K)					
Test No.	<i>L</i> (l h ⁻¹)	$G (\text{Ncm}^3 \text{min}^{-1})$	$P_{\rm H_2, IE}$ (Pa)	η (%)	Test No.	L (l h ⁻¹)	G (Ncm ³ Min ⁻¹)	$P_{\rm H_2, IE}$ (Pa)	η (%)
1	70–90	100	1200-1350	20-22	6	80-105	500	1300-1400	10-12
2	30-50	100	1000-1100	29-31	7	80-105	1000	1200	9-11
3	30-50	500	975-1000	29-31	8	50-65	1000	1150-1200	>14
4	30-50	100	450-475	23-25					
5	30–50	100	220-230	23–25	¹ N. Alp	y et al. <i>Fl</i>	ED 49-50	(2000) 77	5-780

- HCLL DEMO (14 inventory re-circulations per day) requires at least 80% efficiency² even with permeation barriers (with ~100x reduction factor)
- Larger scale tests, optimization planned at TRIEX loop (ENEA) but no results as of yet

Sulzer Column

²O. Gastaldi et al. *FED* **83** (2008) 1340–1347

Vacuum permeator

- For a PbLi-cooled (e.g. DCLL) or salt-cooled fission or fusion reactor, higher flow rates must be processed
 - Simple scaling from most efficient MELODIE tests indicates that for a DCLL blanket (~470 inventory re-circulations/day), 240,000 extraction columns would be required¹ (!)
- DCLL flow rates are much higher (~470 inventory re-circulations/day required)
- Similar performance in a much smaller device is potentially achievable with a vacuum permeator
- Concept: a shell-and-tube mass exchanger with tritium-laden primary, vacuum secondary, and high-permeability, thin-walled tubes
- Required efficiency depends on the reactor design (losses), but:
 - What is achievable?
 - How does it scale?

Permeator extraction efficiency¹

- Transport processes in a permeator tube:
 - Advection in PbLi in the axial direction
 - Convective mass transport in PbLi in the radial direction
 - Permeation (Diffusion) through solid in the radial direction
- Can be solved analytically: $\eta = 1 \exp\left(-\frac{\tau\zeta}{1+\zeta}\right)$
- ζ and τ are dimensionless numbers that indicate the relative importance of three transport phenomena

 $\zeta = \frac{\Phi_s}{K_T K_l r_i \ln(r_o/r_i)}$

 $\tau = \frac{2K_TL}{vr_i}$

¹P. Humrickhouse *Fusion Science and Technology* **68** (2015) 295-302

- r_i inner diameter of tubes
- r_o outer diameter of tubes
- L length of tubes
- v PbLivelocity
- K_I PbLi solubility
- K_T mass transport coefficient
- Φ_s permeability of solid tube

Radial Transport

Axial Transport

Significance of ζ and τ

- ζ indicates whether radial transport is limited by mass transport in PbLi, or by permeation through the solid tube wall
- When $\zeta \ll 1$: Diffusion in the solid is limiting; there is no dependence on the PbLi transport property K_T
- When $\zeta >> 1$: Mass transport in the PbLi is limiting; there is no dependence on the solid transport properties $\Phi_{r_1} r_0$ or PbLi solubility K_{I_1}
- τ is a ratio of axial to radial transport times:

$$\tau = \left(L/\nu\right) / \left(r_i/2K_T\right)$$

- When $\tau >> 1$ tritium is swept through the length of the permeator tube before it has a chance to migrate radially
- Need to evaluate K_T ...

Mass Transport Correlations

- K_T is defined by the Sherwood number: $\text{Sh} = dK_T / D_l$
- Sherwood number correlations have the form $Sh = \beta Re^a Sc^b$
- For PbLi at 470-700 °C, 10 < Sc < 150 $(Sc = \mu/\rho D_l)$
- The correlations below are remarkably consistent with each other, and with the heat transfer analogy- this approach is valid
- The choice of correlation is not a significant source of uncertainty in this analysis relative to other parameters

β	а	b	Range	Reference	Notes
0.023	4/5	1/3		Colburn 1933	Heat transfer analogy
0.023	0.83	0.44	2000 < Re < 35000	Gilliland and Sherwood 1934	Vaporization of nine different liquids in air
			0.6 < Sc < 2.5		
0.0328	0.77	0.33	3000 < Re < 40000	Johnstone and Pigford 1942	Distillation of five different substances in a
			0.5 < Sc < 3		wetted-wall column
0.023	0.83	1/3	2000 < Re < 70000	Linton and Sherwood 1950	Solution of benzoic acid, cinnamic acid,
			1000 < Sc < 2260		and beta-naphthol in water
0.0163	0.83	0.44	Sc ~ 0.6	Kafesjian et al. 1961	Vaporization of water in a wetted-wall
					tower
0.0096	0.913	0.346	10000 < Re < 100000	Harriott and Hamilton 1965	Benzoic acid in glycerin-water, and
			430 < Sc < 100000		hydroxymethycellulose solutions

Permeator Optimization

- Regardless of the transport regime, permeator efficiency is always increased by:
 - Increasing the temperature, T
 - Increasing the tube length, L
 - Decreasing the permeator velocity, v (e.g. by increasing the number of permeator tubes)
 - Decreasing the tube diameter, *d*
- Using the analytical solution, we can optimize the design (minimize the total volume)
- The following slide does so for different materials and temperatures, subject to the following constraints (from ARIES-CS):

$$\eta \ge 0.7$$
 $d \ge 0.01 \,\mathrm{m}$ $\dot{m} = \rho N \pi r_i^2 v = 26000 \,\mathrm{kg/s}$ $\Delta p = f \frac{L}{d} \frac{\rho v^2}{2} \le 1 \,\mathrm{MPa}$

Tube material comparison

	B&W PWR steam generator	RAFM 470 °C	RAFM 470 °C	RAFM 470 °C	Vanadium 400 °C	Vanadium 500 °C	Vanadium 600 °C	Vanadium 700 °C
η (low solubility)		0.7	0.7	0.7	0.7	0.7	0.7	0.7
Tubes (#)	15,000	343,521	68,704	19,432	13,347	10,136	8,274	7,095
Tube length (m)	20.7	8.54	16.61	37.3	18.25	11.15	7.65	5.7
v (m/s)		0.1	0.5	1.77	2.55	3.4	4.22	4.98
Total volume (m ³)	61.8	278.7	108.42	69.0	23.15	10.74	6.01	3.84
ζ		4.85	1.27	0.45	1681	425	148	65
η (high solubility)		0.10	0.04	0.03	0.47	0.36	0.29	0.23

There is a significant size/cost advantage to high-permeability materials

500°C

400°C 350°C

Group 5 Metals - oxidation

- Group 5 metals have very high tritium permeabilities and from that standpoint are promising tube materials
- They are compatible with PbLi, but the oxygen partial pressure on the vacuum side must be kept below 10-10 Pa to prevent oxidation¹
- Application of a Pd coating can prevent this, and commercial hydrogen purifiers based on this concept are available
- They have a very narrow range of operation around 400 °C
 - At lower temperatures, hydrides form and embrittle the structure
 - At higher temperatures, Pd and substrate diffuse together, reducing (irreversibly) the tritium permeability

¹R. Kurtz, 2005 ITER TBM meeting

V. Alimov, International Journal of Hydrogen Energy 36 (2011) 7737-7746

Idaho National Laboratory

Potential solutions

- Inter-diffusion of Pd and substrate can be prevented by an intermediate layer that separates them
 - Such composites are being actively investigated in the hydrogen energy research community
 - These are typically ceramics with some porosity so as not to prevent tritium permeation
 - Al₂O₃, Nb₂C, HfN, YSZ, etc. mentioned in literature
- Alloys?
 - V-Ni, Pd-Cu, V-Ti, V-Cu, others mentioned in literature
- Other coatings- Pd is necessary for separation from other gases, but we only need to prevent oxidation

Fig. 6. Cross-sectional analysis of a palladium-coated vanadium membrane after 22 h under argon showing some diffusion of vanadium into the palladium layer. Test conditions: 700°C, membrane stored under 100-psig argon.

Fig. 7. Cross-sectional analysis of the palladium and vanadium layers of a three-component composite-metal membrane incorporating a porous aluminum oxide intermediate layer operated for 76 h. Test conditions: 700°C, 100-psig hydrogen feed pressure, permeate hydrogen at ambient pressure.

Edlund, *Journal of Membrane Science* **107** (1995) 147-153

Permeation Barriers

- Even under relatively optimistic assumptions for the extraction system, fusion systems studies usually find a permeation reduction factor (PRF) of 10-1000 on structures is necessary to meet release limits
- Many barriers have been investigated experimentally, such as lowpermeability metals (e.g. aluminum) or ceramics such as Al₂O₃, Cr₂O₃, Er₂O₃
- These have achieved permeation reduction factors as high as 10,000 in the laboratory

Al₂O₃ deposition by CVD - Jürgen Konys

Permeation Barriers in a Radiation Environment

 While permeation reduction factors up to 10,000 have been measured in the laboratory, reactor tests on the same materials have not achieved this

Irradiation testing of tritium/hydrogen barriers				Hollenberg et al <i>FED</i> 28 (1995) 190-208				
Test	Tritium source	Tritium sink	Reactor	Barrier system ^a	Temperature (°C)	Effective PRF	Reference	
LIBRETTO-2	Pb-17Li	$He + H_2$	HFR	Alum/316L	275-440	<80	[41, 42]	
LIBRETTO-3	Pb-17Li	$He + H_2$	HFR	316L/TiC	280-450	3	[43]	
		_		Al ₂ O ₃ /316L	280-450	3		
				316L/alum/Al ₂ O ₃	280-450	15		
TREXMAN	Pb-17Li	$He + H_2$	YAYOI	Cr ₂ O ₃ /SS316	600	10	[14]	
		-		$SS316/Cr_2O_3$	600	100		
Loop-1	LiAlO ₂	H ₂ O	ATR	Alum/SS316/alum	318	150	[44]	
WC-1	LiAlO ₂	$\tilde{H_2O}$	ATR	Alum/SS316/alum	< 330	150	[45]	

• This reduction may result from damage (e.g. cracking) of the barrier, an increase in defects, or some other effect under irradiation

Permeation scaling with pressure

- Permeation usually scales with the square root of partial pressure, implying that it is limited by diffusion through the solid
- Low pressures or surface changes can result in surface-limiting and a change to linear dependence on partial pressure
- Systems designed to achieve low tritium partial pressures need to investigate this experimentally
 - Dimensionless number governs transition:

Perkins and Noda *JNM* **71** (1978) 349-364.

Serra and Perujo JNM 240 (1997) 215-220.

Idaho National Laboratory

Conclusions

- A number of tritium capture/extraction concepts have been proposed for fusion over the last several decades
- Some of these have been investigated experimentally, but none on the scale (size, tritium inventory) or under the conditions (radiation, high temperatures, long times) necessary for fusion
- Because of the low solubility of tritium in both PbLi and molten salts (including FLiBe), extraction techniques developed for PbLi are likely applicable to salt-cooled fusion and fission reactors as well
- Tritium generation will be orders of magnitude lower in fission reactors, for which tritium is a much more manageable problem
 - Tritium must be captured, but not necessarily separated/purified
 - Extraction systems may only need to process a fraction of the coolant on each pass
 - Permeation barriers may be unnecessary; for fusion it will be difficult to keep losses sufficiently low without them